Intelligent system for monitoring the information space of news about artificial intelligence

Authors

  • Viacheslav Riabtsev Institute of special communication and information protection at the National technical university of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine https://orcid.org/0000-0001-8331-0132
  • Yurii Marchuk Institute of special communication and information protection at the National technical university of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine https://orcid.org/0009-0004-3708-6108

DOI:

https://doi.org/10.20535/2411-1031.2025.13.2.344713

Keywords:

monitoring, social media, content monitoring system, natural language processing , text classification, artificial intelligence, news document analysis

Abstract

Under conditions of exponential growth in the volume of information related to the development of artificial intelligence (AI) technologies, traditional methods of monitoring the media space become ineffective. Messengers and social networks, particularly Telegram, have become key channels for distributing real-time news, generating high-intensity streams of unstructured data. The article considers the problem of creating an intelligent system for monitoring the information space that is capable of automatically structuring this chaotic data flow. The aim of this work is the design and software implementation of a platform architecture that provides a full ETL (Extract–Transform–Load) cycle: from collecting data via the Telegram API to its semantic analysis and visualization. A modular architecture is proposed that includes subsystems for asynchronous parsing, text preprocessing (NLP pipeline), and an analytical core. The study focuses primarily on the algorithmic support of the system. The use of a hybrid approach to text classification is substantiated, combining dictionary-based methods (Keyword Matching) for accurate identification of entities (for example, models GPT‑4, Gemini, LLaMA) with machine learning components for determining message sentiment. An algorithm for content deduplication is developed, which makes it possible to filter out reposts and information noise and to highlight the sources of news. The results of experimental testing of the developed system on a sample of more than 10,000 messages from thematic Telegram channels are presented. A categorization accuracy of 91% was achieved, which confirms the effectiveness of the chosen methods. The system’s capabilities in detecting trends in real time, constructing the dynamics of mentions of key technologies, and generating automated analytical reports are demonstrated. The practical value of the work lies in creating a toolkit for data researchers, analysts, and developers that significantly reduces the time required to search for relevant information and to track the AI technology landscape.

Author Biographies

Viacheslav Riabtsev, Institute of special communication and information protection at the National technical university of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv

candidate of technical sciences, associate professor, associate professor at the computer science and artificial intelligence technologies in the field of cybersecurity academic department

Yurii Marchuk, Institute of special communication and information protection at the National technical university of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv

master's degree student

References

A. Urman, A., and S. Katz, “What they do in the shadows: examining the far-right networks on Telegram”, Information, Communication & Society, vol. 25 (1), pp. 1-20, 2020. doi: https://doi.org/10.1080/1369118X.2020.1803946.

S. Minaee, N. Kalchbrenner, E., Cambria, N. Nikzad, M. Chenaghlu, and J. Gao, “Deep Learning Based Text Classification: A Comprehensive Review”, ACM Computing Surveys (CSUR), vol. 54, iss. 3, pp. 1-40, 2022. doi: https://doi.org/10.1145/343972.

D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language processing: state of the art, current trends and challenges”, Multimedia Tools and Applications, vol. 82, pp. 3713-3744, 2023. doi: https://doi.org/10.1007/s11042-022-13428-4.

P.K. Jain, V., Saravanan, and R. amula, “A Hybrid CNN-LSTM: A Deep Learning Approach for Consumer Sentiment Analysis Using Qualitative User-Generated Contents”, ACM Trans. on Asian and Low-Res. Lang. Inf. Proc., vol. 20, iss. 5, art. 84, pp. 1-15, 2020. doi: https://doi.org/10.1145/3457206.

О. Пучков, Д. Ланде, та І. Субач, “Модель простору тематичних телеграм-каналів, що базується на контексних посиланнях та методика виявлення її основних зон”, Information Technology and Security, т. 12, вип. 2 (23), с. 151-161, 2024. doi: https://doi.org/10.20535/2411-1031.2024.12.2.315731.

О. Пучков, Д. Ланде, та І. Субач, “Методика створення, кластеризації та візуалізації кореляційних мереж, що визначаються динамікою тематичних інформаційних потоків”, Information Technology and Security, vol. 13, iss. 1, pp. 6-16, 2025. doi: https://doi.org/10.20535/2411-1031.2025.13.1.328753.

“Telegram API Documentation”, Telegram.org, 2024. [Електронний ресурс]. Доступно: https://core.telegram.org/bots/api. Дата звернення: Чер. 30, 2025.

А. Хмельницький, “Перші кроки в NLP: розглядаємо Python-бібліотеку NLTK в реальному завданні”, DOU, 2020. [Електронний ресурс]. Доступно: https://dou.ua/lenta/articles/first-steps-in-nlp-nltk/. Дата звернення: Сер. 14, 2025.

Downloads

Published

2025-11-27

How to Cite

Riabtsev, V., & Marchuk, Y. (2025). Intelligent system for monitoring the information space of news about artificial intelligence. Collection "Information Technology and Security", 13(2), 279–289. https://doi.org/10.20535/2411-1031.2025.13.2.344713

Issue

Section

ARTIFICIAL INTELLIGENCE IN THE CYBERSECURITY FIELD