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This study addresses the challenges of modern steganalysis, which lies in the dichotomy
between highly effective yet computationally expensive State-of-the-Art (SOTA) artificial
intelligence models [1], [2] and lightweight architectures that are fast but incapable of independently
detecting weak steganographic signals [3], [4]. The hypothesis proposed in this research suggests that
combining classical feature engineering techniques — particularly the use of Spatial Rich Model
(SRM) filters to enhance residual noise [5], [6] — with a modern self-supervised learning (SSL)
approach for regularization and improved generalization capability [7], [8], can endow a lightweight
convolutional neural network with the necessary properties for effective performance.

To verify this hypothesis, a comprehensive comparative experiment was conducted involving
four models: a baseline lightweight architecture [3], a model employing SRM filters [6], a heavy
SOTA SRNet (Residual Network) model [1], and the proposed hybrid model [9], [10].

The experiment was carried out on a complex heterogeneous dataset comprising images
processed by three distinct steganographic algorithms with two embedding rates [11]. Performance
evaluation was conducted on two datasets: a test sample from the same data domain (in-distribution)
and a completely new, external dataset to assess generalization capability (out-of-distribution) [11],
[12].

The experimental results fully confirmed the main hypothesis. The hybrid model achieved the
highest detection accuracy among lightweight approaches (AUC — Area Under the ROC Curve of
0.636) and, most importantly, demonstrated the greatest robustness to domain shift (AUC of 0.539
on the external dataset), showing the smallest degradation in performance [10], [13]. The study also
revealed a counterintuitive effect: the heavy SOTA SRNet architecture exhibited a significant failure
(AUC of 0.348) under heterogeneous data conditions, indicating its tendency to overfit to specific
artifacts [1], [2].

Keywords: computer vision, steganographic algorithm, neural network model, performance
evaluation, comprehensive experiment.

Problem Statement. Progress in the field of steganography, particularly the development of
adaptive algorithms aimed at minimizing statistical distortions in digital images, presents researchers
with increasingly complex challenges [8], [12], [14]. In recent years, the dominant approach to
addressing these challenges has been the use of deep convolutional neural networks (CNNs), which
have demonstrated an unprecedented ability to automatically extract and analyze subtle, almost
imperceptible patterns that remain within an image’s structure after steganographic embedding [15].

The pinnacle of this approach is represented by specialized State-of-the-Art (SOTA)
architectures such as SRNet [3], which achieve exceptionally high detection accuracy under
controlled laboratory conditions. However, their outstanding performance comes at the cost of
significant computational expense. These models are characterized by tens of millions of parameters
and demand substantial computational resources, including powerful server-grade graphics
processing units (GPUs) and extensive training times, often lasting several days. This fundamental
limitation creates a substantial practical gap between academic achievements and real-world
deployment, rendering such models unsuitable for many common scenarios: data analysis on mobile
devices, integration into embedded security systems with limited power consumption, or rapid large-
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scale scanning of data archives where speed and computational efficiency are paramount [6]. An
alternative approach involves the direct use of lightweight architectures, such as MobileNetV3 [4],
which were specifically designed for efficient operation under constrained computational conditions.
However, this approach proves to be entirely ineffective for steganalysis. The reason lies in the
intrinsic nature of the steganographic signal — it is an extremely weak, high-frequency noise
distributed across the entire image, masked by the much stronger content signal. Standard lightweight
CNN:gs, architecturally optimized for recognizing semantically significant features, are incapable of
independently isolating and analyzing such subtle statistical anomalies when operating on raw pixel
data.

This, a fundamental scientific and practical dilemma arises: finding an optimal compromise
between highly accurate but resource-intensive SOTA models and fast yet inefficient lightweight
alternatives. This leads to a key research question: is it possible to design an architecture and training
methodology for a lightweight steganalysis model that would be computationally efficient while
maintaining high accuracy and robustness, particularly the ability to generalize to data from unknown
distributions?

The present study hypothesizes that the solution to this problem lies in the hybridization of
approaches. It is assumed that the synergy between classical and modern methods can compensate
for the inherent limitations of lightweight models. First, the application of classical feature
engineering in the form of Spatial Rich Model (SRM) filters [5] can serve as a preprocessing stage,
enhancing weak steganographic noise and transforming it into more prominent residual maps that a
lightweight CNN can effectively process. Second, the use of modern self-supervised learning (SSL)
techniques for pretraining the model on a large corpus of “clean” images can provide it with a
fundamental understanding of the statistical structure of natural images. This approach is expected to
serve as an effective regularizer, encouraging the model to learn more general anomaly patterns rather
than overfitting to specific noise artifacts, thereby significantly improving its reliability and
robustness to domain shifts [2], [7].

The objective of this work is to provide a comprehensive evaluation of the effectiveness of
the proposed hybrid approach. To achieve this goal, a complex experiment was conducted,
encompassing the implementation of four architectures, training on a diverse and challenging dataset,
and a two-level performance evaluation, which included a critical generalization test [11]. The entire
process was deliberately constrained to the computational capabilities of a typical workstation.

1. Architectures of the examined models

Within the framework of the experiment, a comparative analysis of four architectural
approaches was carried out. The first, Baseline, represented an unmodified lightweight MobileNetV3-
Small architecture, which received raw pixel data as input. This model served as a control group to
assess the baseline performance of standard lightweight CNNs. The second approach, SRM, utilized
the same MobileNetV3-Small backbone [4], but was preceded by a fixed (non-trainable)
convolutional layer composed of a set of SRM filters [5]. This model was designed to isolate and
evaluate the impact of classical feature engineering. The third approach, SRNet, was a full
implementation of the State-of-the-Art architecture of the same name [3], [15], serving as a reference
benchmark to determine the upper performance limit for this task. Finally, the fourth approach,
srm_ssl, represented the proposed hybrid architecture, similar to the SRM model, but with its
convolutional backbone pretrained using self-supervised learning (SSL) [2], [7] on 10,000 “clean”
images.

The mathematical essence of the SRM layer lies in the application of the two-dimensional
convolution operation. Each SRM filter is a small kernel matrix f , which is sequentially “slid” across
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the input image / . At each position (x, y), element-wise multiplication of the kernel values and the

corresponding image pixels is performed, followed by summation of the results to form a new value
in the feature map. This process is formally expressed by Equation (1):
(feD)(er) =3, () I (x—iy—j)- ()

SRM filter kernels are specifically designed to function as high-pass filters [5]. They
mathematically nullify or substantially suppress low-frequency signals corresponding to the main
content of the image, while simultaneously enhancing subtle high-frequency noise introduced by
steganographic algorithms. Thus, this stage represents a mathematical transformation aimed at
improving the signal-to-noise ratio (SNR).

To ensure an unbiased comparison, all models were trained under a unified protocol using
advanced process control techniques. Model parameters were optimized using the AdamW optimizer
[13], [14] with an initial learning rate of /e—4 . The learning rate was adaptively reduced using a
ReduceLROnPlateau scheduler in the event of stagnation in the validation AUC metric over three
consecutive epochs. The batch size was set to 32, an empirically determined optimal value for a
hardware configuration with 6 GB of VRAM. To address the significant class imbalance (~1:6), a

weighted Cross-Entropy Loss function was applied. Training was limited to a maximum of 100
epochs and incorporated early stopping if the validation AUC did not improve over ten consecutive
epochs. The key performance metrics were AUC and EER (Equal Error Rate).

The training process consisted of two stages: self-supervised learning (SSL) for the srm_ssl/
model, and supervised learning for all four models. The SSL stage aimed to teach the model
fundamental visual patterns without using class labels, employing a contrastive approach with the
NT-Xent loss function [8,12]. For each image, two randomly augmented versions were generated and
passed through the model to obtain vector representations Z, and Z,. A key operation involved

computing the cosine similarity between these vectors and vectors from other images within the batch,

representing the angle between vectors u and v in a high-dimensional space (Equation 2):
sim(u,v):ﬂ. (2)

e

The NT-Xent loss function, a variant of cross-entropy, mathematically encouraged the model
to maximize the cosine similarity between vectors of the same image (positive pair) while
simultaneously minimizing the similarity with all other vectors in the batch (negative pairs) [7]. The
supervised learning stage faced a significant class imbalance (~1:6). To address this issue in a

mathematically sound manner, a weighted cross-entropy loss function was applied. The standard
binary cross-entropy loss is defined as follows (Equation 3):

L=-[ylog(p)+(1-y)log(l-p)]. 3)

It was modified by introducing weights w, inversely proportional to the frequency of each class

(Equation 4):

Lyuigiiea = =[ w1 - ¥10g(p) +w; - (1= y)log(1 - p)]. 4

This approach compensated for the imbalance, as the weight w,for the rare class was

significantly higher. The minimization of this loss function was performed using the AdamW

(Adaptive Moment Estimation) optimizer [9,14]. The learning rate was adaptively reduced using the

ReduceLROnPlateau scheduler in the event of stagnation in the validation AUC metric over three

epochs, and the entire process was subject to early stopping if no improvement was observed over
ten consecutive epochs.
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To obtain an objective evaluation of model performance, metrics based on Receiver Operating
Characteristic (ROC) analysis were employed. AUC (Area Under the Curve) represents the area
under the ROC curve. Mathematically, it is defined as the integral of this curve, reflecting the model's
overall ability to rank positive instances higher than negative ones. EER (Equal Error Rate) is the
point on the ROC curve where the proportion of false negatives equals the proportion of false
positives (FPR=1—-TPR).

2. Hardware and Software

The experimental platform was deliberately limited to the resources of a typical personal
computer to validate the approaches under conditions approximating real-world scenarios.

All computations were performed on a LENOVO 81Y6 laptop equipped with an Intel Core
processor operating at approximately 2.5 GHz, 16 GB of RAM, and an NVIDIA GPU with 6 GB of
VRAM.

The software environment was deployed on Microsoft Windows 11 Pro (x64). All models and
algorithms were implemented in Python using the PyTorch framework [10] with CUDA support
enabled. Data analysis and result preparation were performed using the scikit-learn and pandas
libraries.

As the primary dataset for training, validation, and testing, the standard BOSSbase 1.01 dataset
[1] was employed. The “clean” subset representing the cover class consisted of 10,000 images. The
stego subset, representing the stego class, was expanded to 60,000 images generated using three
contemporary spatial steganographic algorithms: WOW, S-UNIWARD, and HILL [8,12,14]. Two
embedding payloads were used for each algorithm: low (0.2 bits per pixel) and high (0.4 bits per
pixel). This combination of algorithms and payloads created a complex heterogeneous dataset,
forcing the models to learn generalizable features. For the final assessment of robustness and
generalization capability, the BOWS2 dataset [1], which was entirely unseen during training, was
employed. Prior to the experiments, all images from both datasets were converted to grayscale and
standardized to a uniform size of 256x256 pixels.

Given the hardware constraints, several software-level optimizations were implemented to
improve computational efficiency. To mitigate input/output delays, data caching was performed by
pre-processing the entire dataset once and storing it in fast binary files. For parallelism, a Datal.oader
with four worker processes was employed for asynchronous data preparation on the CPU. On the
GPU level, a set of measures was applied, including Mixed Precision Training, enabling TensorFloat-
32 mode to accelerate matrix operations, and using cuDNN Benchmark mode for dynamically
selecting the fastest convolution algorithms [10].

3. Experimental Procedure

The results obtained from the conducted experiment constitute a comprehensive and
multifaceted set of empirical data, enabling an in-depth analysis of the effectiveness of the
investigated approaches. The data not only provide clear quantitative confirmation of the proposed
hypothesis regarding the advantages of the hybrid method but also reveal several important,
sometimes counterintuitive, patterns in the behavior of steganalyzers of varying architectural
complexity, particularly under heterogeneous datasets and limited computational resources.

The analysis of these results is carried out along two key directions, corresponding to the two-
tier validation system embedded in the experimental design.

First, the final performance of the models on the test sets is considered, allowing for a definitive
quantitative assessment of their discriminative capability on both familiar and previously unseen data
domains. Second, an in-depth analysis of the learning dynamics of each model is conducted,
providing insight not only into the final outcomes but also into the factors leading to them, such as
convergence speed, stability, and susceptibility to overfitting. This dual approach enables the
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formation of a holistic picture, where quantitative metrics are complemented by a qualitative
understanding of the behavior of each investigated architecture.

In the following subsections, a sequential presentation of these results is provided. The final
evaluation of the models was performed on two separate test datasets. The first test, conducted on a
subset of the BOSSbase dataset [1], assessed the models’ performance on data from the same domain
as the training set (in-distribution performance). The second, critical test on the BOWS2 dataset,
evaluated their generalization capability on entirely new, unseen data (out-of-distribution
generalization). The results of both tests are presented in Tables 1 and 2.

A deeper understanding of each model’s behavior can be obtained by analyzing the dynamics
of their training. The graphs below illustrate the changes in the loss function and key metrics on the
validation set over the epochs. The experiment was conducted using four models:

—  baseline;

—  SRNet;

—  SRM,;

- srm_ssl.

Table 1. Final Testing Results on the BOSSbase Dataset (In-Distribution)

Model Accuracy AUC EER
baseline 0.8554 0.4925 0.5000
SRM 0.7193 0.6300 0.4230
SRNet 0.8509 0.3484 0.6120
srm_ssl 0.6763 0.6355 0.4220

Table 2. Generalization Testing Results on the BOWS2 Dataset (Out-of-Distribution)

Model Accuracy AUC EER
baseline 0.6643 0.5001 0.4891
SRM 0.6098 0.5327 0.4848
SRNet 0.6663 0.5001 0.4817
srm_ssl 0.6048 0.5387 0.4747

The training dynamics of the baseline model (Fig.1) confirm the complete inability of this
architecture to extract relevant features from raw data. The validation AUC fluctuates stochastically
around 0.5 throughout the entire training process, which is equivalent to random guessing. The model
exhibits no signs of convergence toward a solution, and the early stopping mechanism correctly
terminates training after 12 epochs. This visually corroborates the initial assumption that standard
lightweight CNNs are not suited for directly processing raw pixels for steganography detection.

The training dynamics of the SRNet model (Fig.2) demonstrate anomalous and counterintuitive
behavior. Although the training loss decreases as expected, the validation AUC exhibits persistent
degradation: after the first epoch, it rapidly drops well below 0.5. This is a classic indication of
catastrophic overfitting, where a highly expressive model learns highly specific and spurious
correlations in the training data, causing its predictions on new data to become systematically worse
than random. The early stopping mechanism successfully prevented further deterioration of the
validation metric.
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Figure 1 — Training dynamics of the baseline model:
a — loss over epochs; b — validation metrics over epochs
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Figure 2 — Training dynamics of the SRNet model:
a — loss over epochs; b — validation metrics over epochs

The SRM model (Fig. 3), unlike the previous ones, demonstrates a pronounced learning
capability. The validation AUC steadily increases during the first 20-25 epochs, reaching a
performance plateau with a peak value of approximately 0.65. This indicates that the prior feature

extraction using SRM filters successfully transformed the input signal, making it suitable for analysis
by a lightweight network.
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Training Dynamics for SRM Model
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Figure 3 — Training dynamics of the SRM model:
a — loss over epochs; b — validation metrics over epochs

However, after reaching the peak, a phase of stagnation and slight degradation begins, and the
validation loss curve becomes highly unstable. This suggests that, although the model has learned, it
quickly reached its ceiling and started overfitting to the peculiarities of the training dataset.

The training dynamics of the hybrid srm_ss/ model initially appear similar to the SRM model

but exhibit key differences (Fig. 4).
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Figure 4 — Training dynamics of the srm_ss/ model:
a — loss over epochs; b — validation metrics over epochs
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First, the validation AUC curve achieves a slightly higher peak value. Second, and most
importantly, the training process is significantly more stable. The validation loss curve does not show
the sharp stochastic fluctuations observed in the SRM model, visually confirming the regularizing
effect introduced by prior self-supervised learning [2], [7]. The model demonstrates smoother and
more stable convergence, indicating a higher quality of learned features.

4. Analysis of Experimental Results

The conducted experiment provided results that not only quantitatively confirm the proposed
hypothesis but also offer a deep qualitative understanding of the processes occurring during the
training of steganalysis models of varying complexity.

The hybrid srm_ssl/ model demonstrated the highest overall performance, outperforming all
other models in key metrics, namely AUC and EER, across both test datasets. On the “in-domain”
BOSSbase dataset, it achieved the best discriminative capability, albeit with a marginal advantage
over the SRM model. However, its primary strength was revealed during the generalization test. When
evaluated on the unseen BOWS?2 dataset, the drop in performance (difference in AUC) for the srm_ss/
model was the smallest among all models capable of learning. This serves as direct experimental
evidence that prior self-supervised learning (SSL) acts as a powerful regularizer [2], [13]. It provides
the model with fundamental knowledge of the structure of natural images, forcing it to focus on more
general, invariant anomalies rather than “memorizing” the specific artifacts of six different types of
noise present in the training set. Consequently, this results in higher model robustness against domain
shifts, a critical property for any practical security tool, especially one intended for deployment on
mid-range hardware.

A notable observation concerns the unsatisfactory performance of the SOTA SRNet
architecture. Its AUC of 0.348, significantly worse than random guessing, requires careful
explanation. The likely cause lies in the combination of two factors: the high expressive capacity of
the architecture itself and the heterogeneity of the training data. SRNet is specifically designed to
capture the smallest anomalies. In our experiment, where the training set consisted of a mixture of
six different types of steganographic noise, the model likely overfitted to the unique, specific artifacts
of each noise type instead of extracting a generalizable steganography feature. When these noises
were mixed in the validation set, the narrowly specialized patterns learned by the model began to
conflict, resulting in chaotic and systematically incorrect predictions. Unlike srm_ssl, SRNet was
trained “from scratch” without any prior knowledge of what natural images look like, making it fully
vulnerable to this type of “noise overfitting”. This outcome strongly supports the notion that, in
complex and realistic conditions, blindly applying the most powerful architectures can be
counterproductive.

Conclusions. This work has demonstrated and experimentally confirmed the high
effectiveness of a hybrid approach for developing lightweight steganalysis models, specifically
adapted to operate under constrained computational resources. It was shown that while feature
engineering using SRM filters is a necessary step for extracting the steganographic signal, the key
element ensuring model reliability and robustness is prior self-supervised learning (SSL). SSL
provides the model with fundamental knowledge of natural images, acting as a powerful regularizer
and significantly enhancing its ability to generalize to new, unseen data.

From a practical standpoint, this study offers a ready-to-use and validated methodology for
creating efficient lightweight steganalysis tools suitable for deployment across a wide range of
hardware, not just specialized servers. In the scientific context, the research emphasizes that
generalization capability is as critical a performance criterion as peak accuracy on ideal datasets. It
also highlights the crucial role of SSL pretraining as a method to improve neural network robustness
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against domain shifts, a relevant issue not only in steganalysis but in numerous other areas of
computer vision.
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OJIEKCAH/IP YCIIEHCBKH,
FOPIM BOHJIAPYYK

CTEI'OAHAJII3 30BPA’KEHb HA OCHOBI I 3A YMOB OBMEXEHHX
OBYUCJ/IIOBAJIBHUX PECYPCIB

VY maHOMy JOCIIKEHHI PO3MIISIAETHCS MPOOIEMAaTHKA CYJacHOTO CTETOaHaNI3Yy, IO MOJISTae
y AUXOTOMIi MK BUCOKOE(DEKTUBHUMH, ajie 00UUCTIOBaIbHO 3aTpaTHUMu State-of-the-Art (SOTA)
MOJIETISIMU IITYYHOTO iHTENeKTy [1], [2], Ta IerkoBaroBUMHU apXiTeKTypaMHu, Kl € MIBUIKUMH, aje
HE3JJaTHUMHU CaMOCTIHHO BHSBIATH cialki creraHorpadiuni curHamm [3], [4]. Byno Bucynyto
rinore3y, Mo MOoETHAHHS KIIACHYHOI 1HXKEHEpii 03HAK, 30KpeMa BUKOpucTaHHs QuIbTpiB Spatial Rich
Model (SRM) st migcuiieHHs 3aIMIIKOBHUX IIyMiB [5], [6], 13 cydacHUM METOJOM CaMOHaBYAaHHS
(Self-Supervised Learning, SSL) nyist perynsipu3aniii Ta MOKpanieHHs 34aTHOCTI 10 y3arajibHeHHs [ 7],
[8], MOke HAAITUTH JIETKOBArOBY 3TOPTKOBY HEHPOHHY MEPEKY HEOOXITHUMHU BIACTUBOCTSAMU JUIS
edexTuBHOI poboTH. )1 IepeBipku OyJ10 MPOBEICHO KOMIUICKCHHUH IMOPIBHSUTBHHUIA €KCIIEPUMEHT 32
y4acTi YOTHPHOX MoJIeneit: 6a30Boi jerkoBaroBoi apxiTektypu [3], moneni 3 SRM-odinsTpamu [6],
Baxkkoi SOTA-apxitektypu SRNet (Residual Network) mozeni [1], Ta 3anpononoBaHoi riOpuaHOT
mozem [10], [13]. ExkcnepumMeHT NpOBOAUBCS Ha CKJIAJHOMY T€TEPOT€HHOMY HaOOpl JaHUX, IO
BKJIIOUaB 300pakeHHs, 00poOJieHI TppOMa PI3HUMH CTEraHOTrpapiYHUMM AJIrOpUTMaMH 3 JBOMa
piBHAMU HaBaHTaxeHHS [11]. Ouinka edeKTUBHOCTI 3MiMCHIOBaNacs HA JBOX HAaOOpax JaHMUX: Ha
TECTOBIM BHOIpIIi 3 TOTO X JOMeHY JaHuX (in-distribution) Ta Ha aGCOMIOTHO HOBOMY, CTOPOHHBOMY
JaTaceTl JJIA MEepeBIPKH 3JaTHOCTI 10 y3araibHeHHs (out-of-distribution) [11], [12]. PesynbTaTn
€KCIIEPUMEHTY MOBHICTIO MIATBEPANIIH 3alPOIIOHOBAHY TiNOTE3Y.

KurouoBi cioBa: xomm'toTepHui 3ip, cTeraHorpadiuHuil ajaropuT™m, Mojeinb HEWPOHHOI
Mepexi, OlliHKa e()eKTUBHOCTI, KOMIUIEKCHUI €KCIIepUMEHT.
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