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This study addresses the challenges of modern steganalysis, which lies in the dichotomy 

between highly effective yet computationally expensive State-of-the-Art (SOTA) artificial 

intelligence models [1], [2] and lightweight architectures that are fast but incapable of independently 

detecting weak steganographic signals [3], [4]. The hypothesis proposed in this research suggests that 

combining classical feature engineering techniques – particularly the use of Spatial Rich Model 

(SRM) filters to enhance residual noise [5], [6] – with a modern self-supervised learning (SSL) 

approach for regularization and improved generalization capability [7], [8], can endow a lightweight 

convolutional neural network with the necessary properties for effective performance. 

To verify this hypothesis, a comprehensive comparative experiment was conducted involving 

four models: a baseline lightweight architecture [3], a model employing SRM filters [6], a heavy 

SOTA SRNet (Residual Network) model [1], and the proposed hybrid model [9], [10].  

The experiment was carried out on a complex heterogeneous dataset comprising images 

processed by three distinct steganographic algorithms with two embedding rates [11]. Performance 

evaluation was conducted on two datasets: a test sample from the same data domain (in-distribution) 

and a completely new, external dataset to assess generalization capability (out-of-distribution) [11], 

[12]. 

The experimental results fully confirmed the main hypothesis. The hybrid model achieved the 

highest detection accuracy among lightweight approaches (AUC – Area Under the ROC Curve of 

0.636) and, most importantly, demonstrated the greatest robustness to domain shift (AUC of 0.539 

on the external dataset), showing the smallest degradation in performance [10], [13]. The study also 

revealed a counterintuitive effect: the heavy SOTA SRNet architecture exhibited a significant failure 

(AUC of 0.348) under heterogeneous data conditions, indicating its tendency to overfit to specific 

artifacts [1], [2]. 

Keywords: computer vision, steganographic algorithm, neural network model, performance 

evaluation, comprehensive experiment. 

 

Problem Statement. Progress in the field of steganography, particularly the development of 

adaptive algorithms aimed at minimizing statistical distortions in digital images, presents researchers 

with increasingly complex challenges [8], [12], [14]. In recent years, the dominant approach to 

addressing these challenges has been the use of deep convolutional neural networks (CNNs), which 

have demonstrated an unprecedented ability to automatically extract and analyze subtle, almost 

imperceptible patterns that remain within an image’s structure after steganographic embedding [15]. 

The pinnacle of this approach is represented by specialized State-of-the-Art (SOTA) 

architectures such as SRNet [3], which achieve exceptionally high detection accuracy under 

controlled laboratory conditions. However, their outstanding performance comes at the cost of 

significant computational expense. These models are characterized by tens of millions of parameters 

and demand substantial computational resources, including powerful server-grade graphics 

processing units (GPUs) and extensive training times, often lasting several days. This fundamental 

limitation creates a substantial practical gap between academic achievements and real-world 

deployment, rendering such models unsuitable for many common scenarios: data analysis on mobile 

devices, integration into embedded security systems with limited power consumption, or rapid large- 
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scale scanning of data archives where speed and computational efficiency are paramount [6]. An 

alternative approach involves the direct use of lightweight architectures, such as MobileNetV3 [4], 

which were specifically designed for efficient operation under constrained computational conditions. 

However, this approach proves to be entirely ineffective for steganalysis. The reason lies in the 

intrinsic nature of the steganographic signal – it is an extremely weak, high-frequency noise 

distributed across the entire image, masked by the much stronger content signal. Standard lightweight 

CNNs, architecturally optimized for recognizing semantically significant features, are incapable of 

independently isolating and analyzing such subtle statistical anomalies when operating on raw pixel 

data. 

This, a fundamental scientific and practical dilemma arises: finding an optimal compromise 

between highly accurate but resource-intensive SOTA models and fast yet inefficient lightweight 

alternatives. This leads to a key research question: is it possible to design an architecture and training 

methodology for a lightweight steganalysis model that would be computationally efficient while 

maintaining high accuracy and robustness, particularly the ability to generalize to data from unknown 

distributions? 

The present study hypothesizes that the solution to this problem lies in the hybridization of 

approaches. It is assumed that the synergy between classical and modern methods can compensate 

for the inherent limitations of lightweight models. First, the application of classical feature 

engineering in the form of Spatial Rich Model (SRM) filters [5] can serve as a preprocessing stage, 

enhancing weak steganographic noise and transforming it into more prominent residual maps that a 

lightweight CNN can effectively process. Second, the use of modern self-supervised learning (SSL) 

techniques for pretraining the model on a large corpus of “clean” images can provide it with a 

fundamental understanding of the statistical structure of natural images. This approach is expected to 

serve as an effective regularizer, encouraging the model to learn more general anomaly patterns rather 

than overfitting to specific noise artifacts, thereby significantly improving its reliability and 

robustness to domain shifts [2], [7]. 

The objective of this work is to provide a comprehensive evaluation of the effectiveness of 

the proposed hybrid approach. To achieve this goal, a complex experiment was conducted, 

encompassing the implementation of four architectures, training on a diverse and challenging dataset, 

and a two-level performance evaluation, which included a critical generalization test [11]. The entire 

process was deliberately constrained to the computational capabilities of a typical workstation. 

1. Architectures of the examined models 

Within the framework of the experiment, a comparative analysis of four architectural 

approaches was carried out. The first, Baseline, represented an unmodified lightweight MobileNetV3-

Small architecture, which received raw pixel data as input. This model served as a control group to 

assess the baseline performance of standard lightweight CNNs. The second approach, SRM, utilized 

the same MobileNetV3-Small backbone [4], but was preceded by a fixed (non-trainable) 

convolutional layer composed of a set of SRM filters [5]. This model was designed to isolate and 

evaluate the impact of classical feature engineering. The third approach, SRNet, was a full 

implementation of the State-of-the-Art architecture of the same name [3], [15], serving as a reference 

benchmark to determine the upper performance limit for this task. Finally, the fourth approach, 

srm_ssl, represented the proposed hybrid architecture, similar to the SRM model, but with its 

convolutional backbone pretrained using self-supervised learning (SSL) [2], [7] on 10,000 “clean” 

images. 

The mathematical essence of the SRM layer lies in the application of the two-dimensional 

convolution operation. Each SRM filter is a small kernel matrix f , which is sequentially “slid” across 
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the input image I . At each position ( , )x y , element-wise multiplication of the kernel values and the 

corresponding image pixels is performed, followed by summation of the results to form a new value 

in the feature map. This process is formally expressed by Equation (1): 

 ( )( ) ( ) ( )
,

, , ,
i j

f I x y f i j I x i y j =  − − . (1) 

SRM filter kernels are specifically designed to function as high-pass filters [5]. They 

mathematically nullify or substantially suppress low-frequency signals corresponding to the main 

content of the image, while simultaneously enhancing subtle high-frequency noise introduced by 

steganographic algorithms. Thus, this stage represents a mathematical transformation aimed at 

improving the signal-to-noise ratio (SNR). 

To ensure an unbiased comparison, all models were trained under a unified protocol using 

advanced process control techniques. Model parameters were optimized using the AdamW optimizer 

[13], [14] with an initial learning rate of 4le − . The learning rate was adaptively reduced using a 

ReduceLROnPlateau scheduler in the event of stagnation in the validation AUC metric over three 

consecutive epochs. The batch size was set to 32, an empirically determined optimal value for a 

hardware configuration with 6 GB of VRAM. To address the significant class imbalance (~ 1: 6) , a 

weighted Cross-Entropy Loss function was applied. Training was limited to a maximum of 100 

epochs and incorporated early stopping if the validation AUC did not improve over ten consecutive 

epochs. The key performance metrics were AUC and EER (Equal Error Rate). 

The training process consisted of two stages: self-supervised learning (SSL) for the srm_ssl 

model, and supervised learning for all four models. The SSL stage aimed to teach the model 

fundamental visual patterns without using class labels, employing a contrastive approach with the 

NT-Xent loss function [8,12]. For each image, two randomly augmented versions were generated and 

passed through the model to obtain vector representations 
1Z  and 2Z . A key operation involved 

computing the cosine similarity between these vectors and vectors from other images within the batch, 

representing the angle between vectors u and v in a high-dimensional space (Equation 2): 

 ( ),
u v

sim u v
u v


= . (2) 

The NT-Xent loss function, a variant of cross-entropy, mathematically encouraged the model 

to maximize the cosine similarity between vectors of the same image (positive pair) while 

simultaneously minimizing the similarity with all other vectors in the batch (negative pairs) [7]. The 

supervised learning stage faced a significant class imbalance (~ 1: 6) . To address this issue in a 

mathematically sound manner, a weighted cross-entropy loss function was applied. The standard 

binary cross-entropy loss is defined as follows (Equation 3):  

  log( ) (1 ) log(1 )L y p y p= − + − − . (3) 

It was modified by introducing weights w , inversely proportional to the frequency of each class 

(Equation 4):  

  1 0log( ) (1 ) log(1 )weightedL w y p w y p= −  +  − − . (4) 

This approach compensated for the imbalance, as the weight 0w for the rare class was 

significantly higher. The minimization of this loss function was performed using the AdamW 

(Adaptive Moment Estimation) optimizer [9,14]. The learning rate was adaptively reduced using the 

ReduceLROnPlateau scheduler in the event of stagnation in the validation AUC metric over three 

epochs, and the entire process was subject to early stopping if no improvement was observed over 

ten consecutive epochs. 
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To obtain an objective evaluation of model performance, metrics based on Receiver Operating 

Characteristic (ROC) analysis were employed. AUC (Area Under the Curve) represents the area 

under the ROC curve. Mathematically, it is defined as the integral of this curve, reflecting the model's 

overall ability to rank positive instances higher than negative ones. EER (Equal Error Rate) is the 

point on the ROC curve where the proportion of false negatives equals the proportion of false 

positives ( 1FPR TPR= − ). 

2. Hardware and Software 

The experimental platform was deliberately limited to the resources of a typical personal 

computer to validate the approaches under conditions approximating real-world scenarios.  

All computations were performed on a LENOVO 81Y6 laptop equipped with an Intel Core 

processor operating at approximately 2.5 GHz, 16 GB of RAM, and an NVIDIA GPU with 6 GB of 

VRAM.  

The software environment was deployed on Microsoft Windows 11 Pro (x64). All models and 

algorithms were implemented in Python using the PyTorch framework [10] with CUDA support 

enabled. Data analysis and result preparation were performed using the scikit-learn and pandas 

libraries. 

As the primary dataset for training, validation, and testing, the standard BOSSbase 1.01 dataset 

[1] was employed. The “clean” subset representing the cover class consisted of 10,000 images. The 

stego subset, representing the stego class, was expanded to 60,000 images generated using three 

contemporary spatial steganographic algorithms: WOW, S-UNIWARD, and HILL [8,12,14]. Two 

embedding payloads were used for each algorithm: low (0.2 bits per pixel) and high (0.4 bits per 

pixel). This combination of algorithms and payloads created a complex heterogeneous dataset, 

forcing the models to learn generalizable features. For the final assessment of robustness and 

generalization capability, the BOWS2 dataset [1], which was entirely unseen during training, was 

employed. Prior to the experiments, all images from both datasets were converted to grayscale and 

standardized to a uniform size of 256×256 pixels. 

Given the hardware constraints, several software-level optimizations were implemented to 

improve computational efficiency. To mitigate input/output delays, data caching was performed by 

pre-processing the entire dataset once and storing it in fast binary files. For parallelism, a DataLoader 

with four worker processes was employed for asynchronous data preparation on the CPU. On the 

GPU level, a set of measures was applied, including Mixed Precision Training, enabling TensorFloat-

32 mode to accelerate matrix operations, and using cuDNN Benchmark mode for dynamically 

selecting the fastest convolution algorithms [10]. 

3. Experimental Procedure 

The results obtained from the conducted experiment constitute a comprehensive and 

multifaceted set of empirical data, enabling an in-depth analysis of the effectiveness of the 

investigated approaches. The data not only provide clear quantitative confirmation of the proposed 

hypothesis regarding the advantages of the hybrid method but also reveal several important, 

sometimes counterintuitive, patterns in the behavior of steganalyzers of varying architectural 

complexity, particularly under heterogeneous datasets and limited computational resources. 

The analysis of these results is carried out along two key directions, corresponding to the two-

tier validation system embedded in the experimental design.  

First, the final performance of the models on the test sets is considered, allowing for a definitive 

quantitative assessment of their discriminative capability on both familiar and previously unseen data 

domains. Second, an in-depth analysis of the learning dynamics of each model is conducted, 

providing insight not only into the final outcomes but also into the factors leading to them, such as 

convergence speed, stability, and susceptibility to overfitting. This dual approach enables the 
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formation of a holistic picture, where quantitative metrics are complemented by a qualitative 

understanding of the behavior of each investigated architecture. 

In the following subsections, a sequential presentation of these results is provided. The final 

evaluation of the models was performed on two separate test datasets. The first test, conducted on a 

subset of the BOSSbase dataset [1], assessed the models’ performance on data from the same domain 

as the training set (in-distribution performance). The second, critical test on the BOWS2 dataset, 

evaluated their generalization capability on entirely new, unseen data (out-of-distribution 

generalization). The results of both tests are presented in Tables 1 and 2. 

A deeper understanding of each model’s behavior can be obtained by analyzing the dynamics 

of their training. The graphs below illustrate the changes in the loss function and key metrics on the 

validation set over the epochs. The experiment was conducted using four models:  

− baseline;  

− SRNet;  

− SRM; 

− srm_ssl. 

 

Table 1. Final Testing Results on the BOSSbase Dataset (In-Distribution) 

Model Accuracy AUC EER 

baseline 0.8554 0.4925 0.5000 

SRM 0.7193 0.6300 0.4230 

SRNet 0.8509 0.3484 0.6120 

srm_ssl 0.6763 0.6355 0.4220 

 

Table 2. Generalization Testing Results on the BOWS2 Dataset (Out-of-Distribution) 

Model Accuracy AUC EER 

baseline 0.6643 0.5001 0.4891 

SRM 0.6098 0.5327 0.4848 

SRNet 0.6663 0.5001 0.4817 

srm_ssl 0.6048 0.5387 0.4747 

 

The training dynamics of the baseline model (Fig.1) confirm the complete inability of this 

architecture to extract relevant features from raw data. The validation AUC fluctuates stochastically 

around 0.5 throughout the entire training process, which is equivalent to random guessing. The model 

exhibits no signs of convergence toward a solution, and the early stopping mechanism correctly 

terminates training after 12 epochs. This visually corroborates the initial assumption that standard 

lightweight CNNs are not suited for directly processing raw pixels for steganography detection. 

The training dynamics of the SRNet model (Fig.2) demonstrate anomalous and counterintuitive 

behavior. Although the training loss decreases as expected, the validation AUC exhibits persistent 

degradation: after the first epoch, it rapidly drops well below 0.5. This is a classic indication of 

catastrophic overfitting, where a highly expressive model learns highly specific and spurious 

correlations in the training data, causing its predictions on new data to become systematically worse 

than random. The early stopping mechanism successfully prevented further deterioration of the 

validation metric. 
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а) б) 

Figure 1 – Training dynamics of the baseline model:  

a – loss over epochs; b – validation metrics over epochs 
 

 
а) б) 

Figure 2 – Training dynamics of the SRNet model: 

a – loss over epochs; b – validation metrics over epochs 
 

The SRM model (Fig. 3), unlike the previous ones, demonstrates a pronounced learning 

capability. The validation AUC steadily increases during the first 20-25 epochs, reaching a 

performance plateau with a peak value of approximately 0.65. This indicates that the prior feature 

extraction using SRM filters successfully transformed the input signal, making it suitable for analysis 

by a lightweight network. 
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Figure 3 – Training dynamics of the SRM model: 

a – loss over epochs; b – validation metrics over epochs 
 

However, after reaching the peak, a phase of stagnation and slight degradation begins, and the 

validation loss curve becomes highly unstable. This suggests that, although the model has learned, it 

quickly reached its ceiling and started overfitting to the peculiarities of the training dataset. 

The training dynamics of the hybrid srm_ssl model initially appear similar to the SRM model 

but exhibit key differences (Fig. 4). 
 

 
а) б) 

Figure 4 – Training dynamics of the srm_ssl model: 

a – loss over epochs; b – validation metrics over epochs 
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First, the validation AUC curve achieves a slightly higher peak value. Second, and most 

importantly, the training process is significantly more stable. The validation loss curve does not show 

the sharp stochastic fluctuations observed in the SRM model, visually confirming the regularizing 

effect introduced by prior self-supervised learning [2], [7]. The model demonstrates smoother and 

more stable convergence, indicating a higher quality of learned features. 

4. Analysis of Experimental Results 

The conducted experiment provided results that not only quantitatively confirm the proposed 

hypothesis but also offer a deep qualitative understanding of the processes occurring during the 

training of steganalysis models of varying complexity. 

The hybrid srm_ssl model demonstrated the highest overall performance, outperforming all 

other models in key metrics, namely AUC and EER, across both test datasets. On the “in-domain” 

BOSSbase dataset, it achieved the best discriminative capability, albeit with a marginal advantage 

over the SRM model. However, its primary strength was revealed during the generalization test. When 

evaluated on the unseen BOWS2 dataset, the drop in performance (difference in AUC) for the srm_ssl 

model was the smallest among all models capable of learning. This serves as direct experimental 

evidence that prior self-supervised learning (SSL) acts as a powerful regularizer [2], [13]. It provides 

the model with fundamental knowledge of the structure of natural images, forcing it to focus on more 

general, invariant anomalies rather than “memorizing” the specific artifacts of six different types of 

noise present in the training set. Consequently, this results in higher model robustness against domain 

shifts, a critical property for any practical security tool, especially one intended for deployment on 

mid-range hardware. 

A notable observation concerns the unsatisfactory performance of the SOTA SRNet 

architecture. Its AUC of 0.348, significantly worse than random guessing, requires careful 

explanation. The likely cause lies in the combination of two factors: the high expressive capacity of 

the architecture itself and the heterogeneity of the training data. SRNet is specifically designed to 

capture the smallest anomalies. In our experiment, where the training set consisted of a mixture of 

six different types of steganographic noise, the model likely overfitted to the unique, specific artifacts 

of each noise type instead of extracting a generalizable steganography feature. When these noises 

were mixed in the validation set, the narrowly specialized patterns learned by the model began to 

conflict, resulting in chaotic and systematically incorrect predictions. Unlike srm_ssl, SRNet was 

trained “from scratch” without any prior knowledge of what natural images look like, making it fully 

vulnerable to this type of “noise overfitting”. This outcome strongly supports the notion that, in 

complex and realistic conditions, blindly applying the most powerful architectures can be 

counterproductive. 

Conclusions. This work has demonstrated and experimentally confirmed the high 

effectiveness of a hybrid approach for developing lightweight steganalysis models, specifically 

adapted to operate under constrained computational resources. It was shown that while feature 

engineering using SRM filters is a necessary step for extracting the steganographic signal, the key 

element ensuring model reliability and robustness is prior self-supervised learning (SSL). SSL 

provides the model with fundamental knowledge of natural images, acting as a powerful regularizer 

and significantly enhancing its ability to generalize to new, unseen data. 

From a practical standpoint, this study offers a ready-to-use and validated methodology for 

creating efficient lightweight steganalysis tools suitable for deployment across a wide range of 

hardware, not just specialized servers. In the scientific context, the research emphasizes that 

generalization capability is as critical a performance criterion as peak accuracy on ideal datasets. It 

also highlights the crucial role of SSL pretraining as a method to improve neural network robustness 
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against domain shifts, a relevant issue not only in steganalysis but in numerous other areas of 

computer vision. 

 

REFERENCES 

[1] G. Xu et al, “SFRNet: Feature Extraction-Fusion Steganalysis Network”, Security and 

Communication Networks, vol. 2021, art. 3676720, 11 p. 2021. doi: https://doi.org/10.1155/ 

2021/3676720.  

[2] H. Kheddar, M. Hemis, Y. Himeur, D. Megías, and A. Amira, “Deep learning for steganalysis 

of diverse data types: review of methods, taxonomy, challenges and future directions”, 

Neurocomputing, vol. 581, iss. C, art. 127528, 2024. doi: https://doi.org/10.1016/ 

j.neucom.2024.127528. 

[3] E. Hong, K. Lim, T.-W. Oh, and H. Jang, “Lightweight image steganalysis with block-wise 

pruning”, Scientific Reports, vol. 13, art. 16148, 2023. doi: https://doi.org/10.1038/s41598-023-

43386-2. 

[4] S. Hong, et al. “Author Correction: Lightweight image steganalysis with block-wise pruning”, 

Scientific Reports, vol. 13, art. 17300, 2023. doi: https://doi.org/10.1038/s41598-023-44614-5. 

[5] S. Liu, C. Zhang, L. Wang, P. Yang, S. Hua, and T. Zhang, “Image Steganalysis of Low 

Embedding Rate Based on the Attention Mechanism and Transfer Learning”, Electronics, 

vol. 12 (4), art. 0969, 2023. doi: https://doi.org/10.3390/electronics12040969. 

[6] F. Liu, X. Zhou, X. Yan, Y. Lu, and S. Wang, “Image Steganalysis via Diverse Filters and 

Squeeze-and-Excitation Convolutional Neural Network”, Mathematics, vol. 9 (2), art. 189, 

2021. doi: https://doi.org/10.3390/math9020189. 

[7] J. Liu, F. Xu, Y. Zhao, X. Xin, K. Liu, and Y. Ma, “Sterilization of image steganography using 

self-supervised convolutional neural network (SS-Net)”, PeerJ Computer Science, vol. 10, 

art. e23302024. doi: https://doi.org/10.7717/peerj-cs.2330. 

[8] W. Guo, “Dilated Separable Convolution Network for Image Steganalysis”, in Proc. 2024 Int. 

Conf. on Image Proc., Mult. Tech. and ML (IPMML'24), Dali Henan, China, 2024, pp. 43-46. 

doi: https://doi.org/10.1145/3722405.3722413. 

[9] S. Mekruksavanich, and A. Jitpattanakul Hybrid convolutional architectures and channel 

attention studies for detection tasks. Scientific Reports, vol. 13, art. 12067, 2023. doi: 

https://doi.org/10.1038/s41598-023-39080-y. 

[10] L. Qiushi, L. Shenghai, T. Shunquan, and L. Zhenjun, “SEAP: Squeeze-and-Excitation 

Attention Guided Pruning for Image Steganalysis Networks”, EURASIP Journal on 

Information Security, art. 25, 2025. doi: https://doi.org/10.1186/s13635-025-00212-8. 

[11] N.J. De La Croix, T. Ahmad, and F. Han, “Comprehensive survey on image steganalysis using 

deep learning”, Array, art. 100353, 2024. doi: https://doi.org/10.1016/j.array.2024.100353.  

[12] S. Agarwal, and K.-H. Jung, “Digital image steganalysis using entropy driven deep neural 

network”, Jour. of Inf. Se. and App., vol. 84, art. 103799, 2024. doi: https://doi.org/10.1016/ 

j.jisa.2024.103799. 

[13] T. Fu, L. Chen, Z. Fu, K. Yu, and Y. Wang, “CCNet: CNN model with channel attention and 

convolutional pooling mechanism for spatial image steganalysis”, Jour. of Vis. Comm. and 

Image Repres., vol. 88, art. 103633, 2022. doi: https://doi.org/10.1016/j.jvcir.2022.103633. 

[14] L. Bohang et al. “Image steganalysis using active learning and hyperparameter optimization”, 

Scientific Reports, vol. 15, art. 7340, 2025. doi: https://doi.org/10.1038/s41598-025-92082-w. 



P-ISSN 2411-1031. Information Technology and Security. July-December 2025. Vol. 13. Iss. 2 (25) 

 

 

319 

[15] Z. Fu et al. “Adaptive, Dilated and Hybrid Techniques for JPEG and Domain-Aware 

Steganalysis”, Signal Processing, vol. 216, art. 109299, 2024. doi: 

https://doi.org/10.1016/j.sigpro.2023.109299. 

 

The article was received 10.09.2025. 

 

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ 

[1] G. Xu et al, “SFRNet: Feature Extraction-Fusion Steganalysis Network”, Security and 

Communication Networks, vol. 2021, art. 3676720, 11 p. 2021. doi: https://doi.org/10.1155/ 

2021/3676720.  

[2] H. Kheddar, M. Hemis, Y. Himeur, D. Megías, and A. Amira, “Deep learning for steganalysis 

of diverse data types: review of methods, taxonomy, challenges and future directions”, 

Neurocomputing, vol. 581, iss. C, art. 127528, 2024. doi: https://doi.org/10.1016/ 

j.neucom.2024.127528. 

[3] E. Hong, K. Lim, T.-W. Oh, and H. Jang, “Lightweight image steganalysis with block-wise 

pruning”, Scientific Reports, vol. 13, art. 16148, 2023. doi: https://doi.org/10.1038/s41598-023-

43386-2. 

[4] S. Hong, et al. “Author Correction: Lightweight image steganalysis with block-wise pruning”, 

Scientific Reports, vol. 13, art. 17300, 2023. doi: https://doi.org/10.1038/s41598-023-44614-5. 

[5] S. Liu, C. Zhang, L. Wang, P. Yang, S. Hua, and T. Zhang, “Image Steganalysis of Low 

Embedding Rate Based on the Attention Mechanism and Transfer Learning”, Electronics, 

vol. 12 (4), art. 0969, 2023. doi: https://doi.org/10.3390/electronics12040969. 

[6] F. Liu, X. Zhou, X. Yan, Y. Lu, and S. Wang, “Image Steganalysis via Diverse Filters and 

Squeeze-and-Excitation Convolutional Neural Network”, Mathematics, vol. 9 (2), art. 189, 

2021. doi: https://doi.org/10.3390/math9020189. 

[7] J. Liu, F. Xu, Y. Zhao, X. Xin, K. Liu, and Y. Ma, “Sterilization of image steganography using 

self-supervised convolutional neural network (SS-Net)”, PeerJ Computer Science, vol. 10, 

art. e23302024. doi: https://doi.org/10.7717/peerj-cs.2330. 

[8] W. Guo, “Dilated Separable Convolution Network for Image Steganalysis”, in Proc. 2024 Int. 

Conf. on Image Proc., Mult. Tech. and ML (IPMML'24), Dali Henan, China, 2024, pp. 43-46. 

doi: https://doi.org/10.1145/3722405.3722413. 

[9] S. Mekruksavanich, and A. Jitpattanakul Hybrid convolutional architectures and channel 

attention studies for detection tasks. Scientific Reports, vol. 13, art. 12067, 2023. doi: 

https://doi.org/10.1038/s41598-023-39080-y. 

[10] L. Qiushi, L. Shenghai, T. Shunquan, and L. Zhenjun, “SEAP: Squeeze-and-Excitation 

Attention Guided Pruning for Image Steganalysis Networks”, EURASIP Journal on 

Information Security, art. 25, 2025. doi: https://doi.org/10.1186/s13635-025-00212-8. 

[11] N.J. De La Croix, T. Ahmad, and F. Han, “Comprehensive survey on image steganalysis using 

deep learning”, Array, art. 100353, 2024. doi: https://doi.org/10.1016/j.array.2024.100353.  

[12] S. Agarwal, and K.-H. Jung, “Digital image steganalysis using entropy driven deep neural 

network”, Jour. of Inf. Se. and App., vol. 84, art. 103799, 2024. doi: https://doi.org/10.1016/ 

j.jisa.2024.103799. 

[13] T. Fu, L. Chen, Z. Fu, K. Yu, and Y. Wang, “CCNet: CNN model with channel attention and 

convolutional pooling mechanism for spatial image steganalysis”, Jour. of Vis. Comm. and 

Image Repres., vol. 88, art. 103633, 2022. doi: https://doi.org/10.1016/j.jvcir.2022.103633. 



P-ISSN 2411-1031. Information Technology and Security. July-December 2025. Vol. 13. Iss. 2 (25) 

 

 

320 

[14] L. Bohang et al. “Image steganalysis using active learning and hyperparameter optimization”, 

Scientific Reports, vol. 15, art. 7340, 2025. doi: https://doi.org/10.1038/s41598-025-92082-w. 

[15] Z. Fu et al. “Adaptive, Dilated and Hybrid Techniques for JPEG and Domain-Aware 

Steganalysis”, Signal Processing, vol. 216, art. 109299, 2024. doi: 

https://doi.org/10.1016/j.sigpro.2023.109299. 

 

ОЛЕКСАНДР УСПЕНСЬКИЙ, 

ЮРІЙ БОНДАРЧУК 

 

СТЕГОАНАЛІЗ ЗОБРАЖЕНЬ НА ОСНОВІ ШІ ЗА УМОВ ОБМЕЖЕНИХ 

ОБЧИСЛЮВАЛЬНИХ РЕСУРСІВ 

 

У даному дослідженні розглядається проблематика сучасного стегоаналізу, що полягає 

у дихотомії між високоефективними, але обчислювально затратними State-of-the-Art (SOTA) 

моделями штучного інтелекту [1], [2], та легковаговими архітектурами, які є швидкими, але 

нездатними самостійно виявляти слабкі стеганографічні сигнали [3], [4]. Було висунуто 

гіпотезу, що поєднання класичної інженерії ознак, зокрема використання фільтрів Spatial Rich 

Model (SRM) для підсилення залишкових шумів [5], [6], із сучасним методом самонавчання 

(Self-Supervised Learning, SSL) для регуляризації та покращення здатності до узагальнення [7], 

[8], може наділити легковагову згорткову нейронну мережу необхідними властивостями для 

ефективної роботи. Для перевірки було проведено комплексний порівняльний експеримент за 

участі чотирьох моделей: базової легковагової архітектури [3], моделі з SRM-фільтрами [6], 

важкої SOTA-архітектури SRNet (Residual Network) моделі [1], та запропонованої гібридної 

моделі [10], [13]. Експеримент проводився на складному гетерогенному наборі даних, що 

включав зображення, оброблені трьома різними стеганографічними алгоритмами з двома 

рівнями навантаження [11]. Оцінка ефективності здійснювалася на двох наборах даних: на 

тестовій вибірці з того ж домену даних (in-distribution) та на абсолютно новому, сторонньому 

датасеті для перевірки здатності до узагальнення (out-of-distribution) [11], [12]. Результати 

експерименту повністю підтвердили запропоновану гіпотезу.  

Ключові слова: комп'ютерний зір, стеганографічний алгоритм, модель нейронної 

мережі, оцінка ефективності,  комплексний експеримент. 
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