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This article addresses one of the key challenges in modern intelligent systems engineering: the 

practical implementation of the Privacy-by-Design principle, enshrined in the General Data 

Protection Regulation (GDPR), within artificial intelligence architectures. Existing approaches, such 

as federated learning, differential privacy, and homomorphic encryption, while effective tools, create 

a rigid trade-off between the level of personal data protection, model utility (accuracy), and 

computational efficiency when applied statically. Such a unified “one-size-fits-all” approach is 

inefficient, as it leads to either excessive protection of non-sensitive data, which unjustifiably 

degrades performance, or insufficient protection for the most vulnerable categories of information. 

The objective of this research is to develop a conceptual framework for a novel artificial intelligence 

architecture that resolves this issue through dynamic, risk-oriented management of privacy 

mechanisms. The result of this study is a proposed adaptive hybrid architecture. The scientific novelty 

of this work lies in shifting from a static model of applying Privacy-Enhancing Technologies (PETs) 

to a flexible, multi-layered system. This system classifies data and model components in real-time 

based on their sensitivity level and associated risks. Depending on the risk level, the architecture 

dynamically applies an optimal set of protection tools: from basic federated learning with light 

differential privacy guarantees for low-risk data to the application of homomorphic encryption for 

the most critical computations. At the core of the architecture is an optimization model that aims to 

maximize model utility while minimizing computational costs, ensuring compliance with predefined 

privacy thresholds for each data category as required by GDPR. This approach enables the creation 

of more efficient, secure, and productive intelligent systems that meet modern regulatory demands. 

Key words: artificial intelligence, GDPR, privacy-by-design, federated learning, differential 

privacy, homomorphic encryption, adaptive architecture, privacy-enhancing technologies. 

 

1. Introduction. The era of artificial intelligence (AI) and big data has fundamentally and 

irrevocably transformed the technological landscape, becoming the driving force of the fourth 

industrial revolution. We are witnessing unprecedented innovations in all spheres of human activity: 

from personalized medicine, where algorithms predict disease development based on genomic data, 

and autonomous transport, which promises to enhance road safety, to intelligent financial systems 

capable of detecting complex fraudulent schemes in real-time. At the heart of this revolution lies the 

ability of complex algorithms, particularly machine and deep learning models, to identify non-

obvious patterns in vast, multidimensional data arrays and make predictions with superhuman 

accuracy. However, this technological progress has a flip side. Its fuel is data, and this analytical 

capability is inextricably linked to the processing of personal data on an unprecedented scale. AI 

systems today operate not just with names and addresses, but with the most sensitive information 

about an individual: biometric indicators, medical diagnoses, behavioral patterns, financial 

transactions, and even emotional states. The uncontrolled use of such data creates significant and real 

risks to fundamental human rights and freedoms, including the right to privacy, protection against 

algorithmic discrimination, preservation of personal autonomy, and even freedom of thought. The 

awareness of these risks and the public demand for establishing digital sovereignty of the individual 

have led to the emergence of a new generation of data regulation legislation. The most significant and 

influential act in this area became the General Data Protection Regulation (GDPR), adopted by the  
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European Union in 2016. Thanks to its extraterritorial principle of application, the GDPR quickly 

transformed from a regional standard into a de facto global one, forcing organizations worldwide to 

reconsider their approaches to working with data. One of the cornerstones and most innovative 

provisions of the Regulation is Article 25, which enshrines the principles of “Data Protection by 

Design” and “Data Protection by Default”. Together, they form the holistic concept of Privacy-by-

Design, which requires a fundamental paradigm shift. It is a transition from an outdated, reactive 

security model, where protection measures were added to an already finished system (“bolted-on 

security”), to a proactive approach, where privacy is considered an integral part of the architecture, 

embedded in its foundation from the earliest stages of design. This principle requires engineers and 

developers not just to check boxes on a list of legal requirements, but to think in terms of privacy as 

one of the key functional characteristics of the system. For the engineering and technical community 

working in the field of AI, this requirement has become a serious practical and conceptual challenge. 

Traditional machine learning architectures, especially centralized models where all data is collected 

and processed in a single repository, are inherently contrary to key GDPR principles such as data 

minimization. Such centralized repositories not only create a single point of failure but also become 

attractive targets for attackers (“honey pots”). 

Therefore, the direct implementation of Privacy-by-Design requires a fundamental rethinking 

of the entire data lifecycle in AI systems: how data is collected, transmitted, stored, and used for 

training models. This task is complicated by the fact that any privacy protection measures inevitably 

conflict with other key non-functional requirements of the system. This gives rise to the so-called 

triumvirate of compromises, or the “privacy-accuracy-efficiency” trilemma. The implementation of 

privacy mechanisms (e.g., adding noise) often reduces the accuracy of predictions (model utility), 

while the use of cryptographic methods can increase computational complexity and training time by 

orders of magnitude. Finding an optimal, dynamic, and context-dependent balance within this triangle 

is one of the most important and complex scientific and practical tasks of modern intelligent systems 

engineering. 

This article is dedicated to a thorough investigation of this problem and proposes ways to solve 

it. We aim to go beyond a simple review of existing privacy-enhancing technologies and their static 

combinations. Our goal is to propose a new architectural approach that will allow the creation of AI 

systems that not only formally comply with the letter of the law but do so in an efficient, flexible, and 

intelligent way. We present a concept that treats privacy not as a constraint, but as a manageable 

parameter in a multidimensional optimization problem. This will enable developers to build more 

trusted, resilient, and socially responsible intelligent systems, which is a necessary condition for their 

sustainable development and societal acceptance. 

2. State-of-the-art. An analysis of current scientific research and engineering practices allows 

us to identify three main technological pillars on which AI architectures that implement Privacy-by-

Design principles are built: Federated Learning (FL), Differential Privacy (DP), and Homomorphic 

Encryption (HE). Each of these approaches has unique advantages and disadvantages, and their 

combination opens the way to creating complex hybrid systems. 

2.1. Federated Learning as a Decentralized Paradigm  

Federated Learning, first proposed by Google researchers, has become a fundamental paradigm 

shift from centralized to decentralized machine learning. The main idea of FL is to train a global AI 

model on distributed data without the need to transfer this data to a central server. Instead, the global 

model is sent to client devices (e.g., mobile phones or hospital servers), where it is locally trained on 

local data. After that, only the model updates (e.g., gradients) are returned to the central server, not 

the data itself. These updates are aggregated to improve the global model, and the cycle repeats. As 

noted in the report of the European Data Protection Supervisor, FL inherently implements the 

principle of data minimization, which is a key requirement of the GDPR [1]. 
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However, as K. Bonawitz et al, rightly point out in their survey [2], federated learning by itself 

is not a panacea. Although the raw data remains local, the transmitted model updates may contain 

enough information to carry out attacks, such as data reconstruction attacks or membership inference 

attacks, which allow an attacker to find out whose data was used for training. Thus, FL should be 

considered not as a standalone solution, but as a basic architecture that needs to be supplemented with 

other Privacy-Enhancing Technologies (PETs). 

2.2. Differential Privacy as a Standard for Privacy Guarantees  

Differential Privacy has become the gold standard for providing rigorous, mathematically 

provable privacy guarantees. The concept, formalized by C. Dwork [3], is that the result of any 

analysis (including the training of an Al model) should not significantly change if the data of one 

individual is removed from the initial dataset. In practice, this is achieved by adding carefully 

calibrated statistical noise to the data, intermediate results (e.g., gradients in FL), or final results. The 

level of privacy is quantitatively measured by the parameter epsilon (ε), where a smaller value of ε 

corresponds to a higher level of protection. 

The combination of FL and DP (FL+DP) is the most common approach to building private AI 

systems. In such an architecture, clients add differentially private noise to their updates before sending 

them to the server. This approach was described in detail and implemented in the work of R. Shokri 

and V. Shmatikov [4], where they proposed a collaborative deep learning system that allows 

participants to train models while disclosing only a limited part of their updates. However, the main 

problem with DP, as convincingly shown by B. Jayaraman et al. in their practical study [5], is the 

fundamental trade-off between privacy and model utility. To achieve strong privacy guarantees (low 

ε), it is necessary to add a significant amount of noise, which can significantly degrade the model's 

accuracy. This challenge has spurred the development of more advanced architectures, such as the 

PATE (Private Aggregation of Teacher Ensembles) approach proposed by N. Papernot et al. [11], 

where privacy is achieved by aggregating the predictions of an ensemble of “teacher models” trained 

on disjoint data subsets. Nevertheless, the trade-off dilemma remains a central challenge for engineers 

working with DP. 

2.3. Homomorphic Encryption as a Tool for Computations on Encrypted Data 

Homomorphic Encryption is a cryptographic technique that allows computations to be 

performed directly on encrypted data without decrypting it. The result of such computations remains 

encrypted, and after decryption, it will be identical to the result that would have been obtained from 

computations on plaintext data. From a privacy perspective, this is an ideal solution, as the server 

performing the computations (e.g., aggregating gradients in FL) never has access to unencrypted data 

or updates. However, as noted in the survey by R. Podschwadt et al. [6], the main obstacle to the 

widespread adoption of HE is the extremely high computational costs and significant resource 

consumption. Operations on encrypted data are orders of magnitude slower than on plaintext. Despite 

significant progress in optimization, such as in the work of Y. Joo et al., where a speedup of up to 

2.55 times was achieved for neural networks [7], the practical use of fully homomorphic encryption 

for training complex deep learning models remains extremely difficult. Because of this, HE is more 

often used for specific, less computationally intensive tasks, such as secure aggregation in FL. 

2.4. Hybrid Approaches and Unresolved Problems 

Understanding the limitations of each approach has prompted researchers to create hybrid 

architectures. One of the indicative works in this direction is the study by S. Truex et al. [8], which 

proposes a system that combines FL, DP, and Secure Multiparty Computation (SMC), in particular, 

using additive homomorphic encryption. In their system, clients add a smaller amount of differentially 

private noise, and secure aggregation using cryptography ensures that the server cannot see individual 

updates, which allows for increased model accuracy at the same level of privacy. Similar hybrid 

models that combine different PETs are considered in the comparative study by E. Shalabi et al. [9]. 
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Despite significant progress, the literature analysis reveals a key unresolved problem: existing 

approaches, even hybrid ones, predominantly apply a static, unified level of protection to all data and 

computational stages. For example, the same privacy budget ε is applied to all gradient updates, 

regardless of how sensitive the data used to calculate them was. Such a “one-size-fits-all” approach 

is inefficient. 

It either provides excessive protection for non-sensitive data, leading to an unjustified loss of 

accuracy and performance, or proves insufficient for protecting the most vulnerable information, such 

as data belonging to special categories according to Article 9 of the GDPR. This lack of flexibility 

and adaptability is the main gap that this article aims to address. 

3. Formulation of the Article's Goals. Based on the analysis of unresolved problems in the 

implementation of Privacy-by-Design, the main goal of this article is to develop a conceptual 

framework for an adaptive, risk-oriented hybrid AI architecture. This architecture is intended to 

overcome the limitations of static approaches by dynamically managing privacy-enhancing 

technologies to optimize the balance in the “privacy-accuracy-efficiency” triad. 

To achieve this goal, the following tasks are set: 

1. To design a multi-level model for classifying data and computations by privacy risk level. 

2. To develop the logic for dynamic selection and configuration of PETs (FL, DP, HE) 

according to the identified risk level. 

3. To formulate the concept of an optimization model that underlies the architecture and 

manages the trade-offs between key system metrics. 

The scientific novelty of this work lies in the transition from the paradigm of static, universal 

protection to dynamic, context-dependent privacy management. Unlike existing works that focus on 

combining PETs in a fixed configuration, we propose an intelligent system that treats the choice of 

protection mechanism as a real-time optimization task. The proposed architecture can adapt the level 

of protection to the sensitivity of specific data and the vulnerability of individual components of the 

AI model. This allows for a more granular and effective fulfillment of GDPR requirements while 

minimizing the negative impact on model utility and computational resources. Such a proposal is a 

new engineering approach to building trusted intelligent systems. 

4. Adaptive, Risk-Oriented Hybrid Architecture. To address the stated challenges and 

overcome the fundamental trade-offs inherent in static approaches, we propose the concept of an 

Adaptive, Risk-Oriented Hybrid Architecture (AROHA). This architecture is not just a combination 

of existing technologies, but a new paradigm for designing intelligent systems, based on flexibility 

and contextual awareness. The term “adaptive” signifies the system's ability to dynamically change 

its behavior and protection configuration in response to changing data characteristics and privacy 

requirements. “Risk-oriented” emphasizes that the driving force for decision-making is not hard-

coded rules, but a continuous assessment of potential risks to the rights and freedoms of data subjects, 

as required by the spirit of the GDPR. Finally, “hybrid” indicates that the architecture intelligently 

orchestrates the application of a whole spectrum of Privacy-Enhancing Technologies (PETs), using 

each where it is most appropriate. 

The fundamental principle of AROHA lies in the recognition and practical application of the 

fact that not all data and not all computations are equally sensitive. For example, in a medical AI 

system, a patient's diagnosis carries significantly higher risks than general demographic statistics, and 

the gradients of the last layers of a neural network can reveal more information about specific training 

examples than the gradients of the initial layers. Applying a single, most stringent level of protection 

to the entire system for example, using homomorphic encryption for all operations without exception 

is extremely inefficient and practically infeasible. Such a “one-size-fits-all” approach creates a false 

dichotomy: either we choose maximum protection, which leads to exorbitant computational costs and 

significant degradation of model accuracy, or we settle for a weaker but more productive level of 

protection, which may be insufficient for special categories of data. AROHA moves beyond this 
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limited choice by differentiating protection approaches based on a continuous, granular risk 

assessment. Instead of building an impregnable fortress around the entire data array, it creates a multi-

layered security system where the most valuable assets are protected by the strongest mechanisms, 

and less critical ones by more efficient and lightweight means. To implement this principle, the 

proposed architecture consists of three key interconnected modules that together form a closed loop 

of privacy management: a sensitivity assessment module, a dynamic PET application module, and an 

optimization model. 

4.1. Multi-level Sensitivity Assessment Module  

The first and primary component of the architecture is the Multi-level Sensitivity Assessment 

Module. Its task is to classify both input data and internal components of the AI model by their level 

of privacy risk. This classification is dynamic and can take into account various factors, including the 

type of data, the context of its use, and the vulnerability of a specific computational stage. A three-

level classification model is proposed: 

− Level 1: Low Risk. This level includes data that is not personal or has been effectively 

anonymized, as well as computations on those layers of the neural network that are known to be less 

prone to information leakage (e.g., initial convolutional layers in computer vision models). Parameter 

updates related to this level have a low potential for data reconstruction attacks. 

− Level 2: Medium Risk. This level covers ordinary personal data not belonging to special 

categories (e.g., age, gender, geolocation data), as well as computations in the intermediate layers of 

the model that may indirectly disclose information about the input data. This level requires a balanced 

approach to protection. 

− Level 3: High Risk. This level includes special categories of data as defined in Article 9 of 

the GDPR (e.g., medical diagnoses, biometric data, political opinions), financial information, as well 

as computations directly related to the model's input and output data. Gradients calculated for these 

layers are the most informative and pose the greatest threat in case of a leak. In addition, data 

belonging to vulnerable population groups may be assigned to this level. 

Classification can be carried out based on metadata, automatic analysis of data semantics (e.g., 

using natural language processing models), and predefined security policies that comply with GDPR 

requirements and organizational policies. 

4.2. Dynamic PET Application Module 

The second component is the Dynamic PET Application Module. This module receives 

information from the Sensitivity Assessment Module and, depending on the assigned risk level, 

applies the appropriate protection mechanism. Its logic is as follows: 

− For Level 1 (Low Risk): The basic Federated Learning (FL) architecture is used. To provide 

a basic level of protection and comply with general principles, Differential Privacy (DP) with a high 

privacy budget (large ε value) can be applied to the updates. This adds a minimal amount of noise, 

which has almost no effect on the model's accuracy and convergence speed, but creates a formal 

privacy guarantee. 

− For Level 2 (Medium Risk): A combination of FL + DP with strict privacy guarantees 

(small ε value) is applied. To reduce the amount of noise needed to achieve the target ε at the server 

level, the aggregation of updates can be protected using cryptographic methods such as Secure 

Multiparty Computation (SMC) based on additive homomorphic encryption. This allows the server 

to compute the sum of the updates without seeing them individually, which reduces overall risks. 

− For Level 3 (High Risk): To process the most sensitive data and perform critical 

computations, the strongest tool is applied Homomorphic Encryption (HE). For example, if a model 

processes financial transactions to detect fraud, computations directly related to transaction amounts 

can be performed in an encrypted form. Although this is computationally expensive, such an approach 

is justified for protecting the most valuable information. The use of HE is selective and applies only 

to a small part of the computations, making it practically feasible. 
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Thus, the system dynamically creates a hybrid protection model that adapts to the data context. 

4.3. Optimization Model 

At the core of the AROHA framework lies a sophisticated optimization model that governs the 

selection and configuration of the privacy-enhancing technologies. Its purpose is to maximize the 

overall effectiveness of the system by finding the best possible balance among three competing, and 

often conflicting, objectives: the utility of the model, the level of privacy, and the computational costs. 

Here, model utility refers to its performance, such as predictive accuracy. The privacy level represents 

the strength of the safeguards protecting the data, while computational costs include the necessary 

processing power and time. The model operates on a principle of maximizing this utility while 

simultaneously minimizing both privacy risks and computational expenses. It achieves this by treating 

the task as a multi-objective optimization problem. The system assigns different levels of importance 

or weights to each of these three factors, which can be tuned according to the specific requirements 

of the application. For instance, in a medical diagnostics system, the weight for privacy would be set 

extremely high, whereas for a less sensitive application, the weights for utility and efficiency might 

take precedence. Crucially, this optimization does not happen in a vacuum. It is bound by a 

fundamental rule: for every category of data, the level of privacy must never fall below a pre-defined 

minimum threshold. This threshold is established by security policies in strict accordance with the 

legal mandates of GDPR, ensuring that the most sensitive data (e.g., High-Risk Level 3) always 

receives the robust, non-negotiable protection it requires. In practice, this optimization model 

functions as an intelligent controller. At each round of the federated learning process, or for each new 

batch of data, it assesses the context and decides on the most appropriate combination of PETs to 

deploy. This transforms the static, one-time choice of an architecture into a continuous, dynamic 

process of intelligent resource allocation, which is the key innovation of the proposed approach. 

5. Results and Discussion. The main result of this study is the development and justification 

of a conceptual framework for an adaptive, risk-oriented hybrid architecture (AROHA). This 

framework is not just another configuration of existing technologies, but offers a new engineering 

philosophy for implementing Privacy-by-Design in complex AI systems. Unlike the vast majority of 

existing solutions that apply unified, static protection mechanisms to the entire data stream, the 

proposed architecture provides dynamic, granular, and context-aware privacy management. The 

novelty of the approach lies in the creation of an intelligent orchestration layer that makes real-time 

decisions about which protection tool, with which parameters, and to which specific data or 

computations to apply. This allows for a much more effective and flexible balance between three 

critical, often conflicting, goals: compliance with strict GDPR requirements, preservation of high 

model accuracy (utility), and minimization of computational costs. In essence, AROHA transforms 

privacy from a rigid constraint into a manageable, optimized system parameter. 

To gain a deeper understanding of the contribution of the proposed approach, let us compare it 

with the results and conclusions obtained by other leading researchers in this field. The pioneering 

works that laid the foundation for private machine learning, particularly the work of R. Shokri and V. 

Shmatikov [4], brilliantly demonstrated the very possibility of effectively combining distributed deep 

learning with differential privacy. However, their approach, though revolutionary, applied a single 

protection mechanism and level to all participants and their updates. 

AROHA develops this idea by adding a superstructure in the form of an intelligent controller 

that differentiates the level of protection depending on the properties of the data itself. This allows 

for a partial solution to the fundamental problem of the trade-off between privacy and accuracy, which 

was so sharply and convincingly highlighted by B. Jayaraman et al. [5] in their landmark study. They 

empirically showed that to achieve strong, formal privacy guarantees with a unified approach, the 

accuracy of complex models can drop to an unacceptable level. AROHA directly responds to this 

criticism: our architecture proceeds from the assumption that applying such strong guarantees 

everywhere is strategically wrong. Instead, it selectively applies them only where the high risk 
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justifies the inevitable loss of utility, allowing the system as a whole to function with much higher 

accuracy. 

More modern hybrid models, similar to the one proposed by S. Truex et al. [8], which combine 

FL, DP, and cryptography (SMC), are a significant step forward compared to mono-technology 

approaches. However, even in their system, the choice and configuration of these tools remain static, 

determined at the design stage. 

AROHA proposes the next logical step in evolution: to make the very combination of these 

tools dynamic and context-dependent. For example, instead of always using computationally 

expensive secure multiparty computation for aggregation, AROHA can activate this mechanism only 

for updates classified as belonging to medium and high-risk levels, using simpler and faster methods 

for low-risk updates. A similar argument applies to research in the field of homomorphic encryption. 

Works such as that of Y. Joo et al. [7] focus on optimizing the technology itself from within, trying 

to reduce its computational costs. AROHA offers a complementary approach: instead of trying to 

perform all model training using HE, which is currently impractical, our architecture proposes a 

“surgically precise”, selective application of HE only to those computations where it is absolutely 

necessary. This significantly reduces the overall computational load on the system. 

An approach similar to ours for granular privacy management can be found in the article by 

Z. He et al. [10], where they propose a system that adapts DP parameters depending on the level of 

trust in the participants of federated learning. 

Our proposal is more general and fundamentally more consistent with the GDPR, as it is based 

not on the subjective category of trust, but on the objective properties of the data itself. The 

requirements of the GDPR, especially regarding special categories of data, are tied to the nature of 

the information, not the reputation of its processor. 

Of course, the proposed architecture is not without its own challenges and limitations. The 

practical implementation of the Multi-level Sensitivity Assessment Module is a complex engineering 

task that requires the development of accurate, fast, and reliable algorithms for automatic data 

classification. In addition, the optimization controller itself creates additional computational overhead 

and could potentially become a bottleneck in the system. However, we hypothesize that with proper 

implementation, the gains in resource efficiency and preservation of model accuracy will far outweigh 

these costs, especially in large-scale, industrial systems. 

Thus, the proposed architecture is not just a theoretical construct, but also a practical 

engineering guideline. It shifts the discussion in the professional community from the question of 

“whether to use PETs?” to the much more productive and relevant question of “how to use them 

intelligently, flexibly, and adaptively to build trusted AI systems?”. 

6. Conclusions. This study was dedicated to solving one of the most fundamental and complex 

problems at the intersection of artificial intelligence and law: the effective and pragmatic 

implementation of the Privacy-by-Design principle, enshrined in the GDPR, in the architectures of 

modern intelligent systems. The analysis of the state-of-the-art confirmed that existing technological 

tools federated learning, differential privacy, and homomorphic encryption are powerful, yet limited 

in their isolated application. We concluded that their static, unified use, where a single level of 

protection is applied to the entire system, inevitably leads to an inefficient and rigid trade-off within 

the “privacy-accuracy-efficiency” trilemma. This approach forces engineers to choose between 

insufficient protection for sensitive data or excessive protection for non-critical information, which 

in both cases is a suboptimal solution from both a technical and a regulatory perspective. 

In response to this identified gap, the article proposed and thoroughly substantiated the 

conceptual framework of a new adaptive, risk-oriented hybrid architecture (AROHA). The key idea 

underlying our proposal is a radical departure from the static, monolithic protection paradigm in favor 

of flexible, intelligent, and dynamic management of privacy mechanisms. The proposed architecture, 

consisting of three synergistic components a module for multi-level data classification by sensitivity, 
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a module for the dynamic application of an optimal set of PETs for each risk level, and a governing 

optimization model transforms the problem of ensuring privacy from an immutable constraint into a 

manageable parameter. This allows the system to adapt to the context in real-time, applying a level 

of protection that is adequate to the risks associated with specific data and computations. 

The main contribution of this work lies in the formulation of a new engineering approach that 

serves as a practical blueprint for building the next generation of trusted AI systems. We propose 

creating more flexible, efficient, and granularly managed systems that not only formally comply with 

GDPR requirements but also embody its spirit. This approach avoids unnecessary degradation of 

model accuracy by protecting non-sensitive data with lighter methods, while simultaneously 

concentrating powerful, albeit computationally expensive, tools like homomorphic encryption on 

protecting the most vulnerable categories of information. This is not only a technical but also an 

economic optimization, making the implementation of robust privacy guarantees more realistic for a 

wide range of applications. 

Prospects for further research are broad and multifaceted.  

Firstly, an urgent practical step is the development and implementation of a software prototype 

of the proposed architecture. Its creation will allow for comprehensive empirical studies to 

quantitatively assess the gains in accuracy and performance compared to existing static approaches 

on standard benchmark datasets.  

Secondly, further development of algorithms for the Sensitivity Assessment Module requires 

significant attention. This is a complex scientific task that demands the creation of lightweight and 

effective methods for automatic semantic data classification and identification of vulnerable model 

components in real-time, possibly using meta-learning.  

Thirdly, a deep theoretical investigation of the properties of the optimization model is an 

interesting direction, including formal proofs of convergence guarantees and analysis of its 

computational complexity when using various optimization methods, from classical to reinforcement 

learning-based. Finally, the most important direction is the extension of the AROHA philosophy itself 

beyond privacy. We hypothesize that the proposed risk-oriented, adaptive approach can be 

generalized to manage other ethical aspects of AI, such as fairness, transparency, and explainability. 

This opens the way to the creation of comprehensive frameworks for managing trust in AI 

(Trustworthy AI), where the system can dynamically balance between different, often conflicting, 

ethical requirements, which is one of the most difficult challenges on the path to creating responsible 

artificial intelligence. 

 

REFERENCE 

[1] “TechSonar report: Federated learning”, European Data Protection Supervisor, June 2024. 

[Online]. Available: https://www.edps.europa.eu/press-publications/publications/techsonar/ 

federated-learning_en. Accessed on: May 19, 2025.  

[2] K. Bonawitz et al., “Towards federated learning at scale: System design”, in Proc. 2nd SysML 

Conf., Stanford, CA, USA, 2019, 15 p. doi: https://doi.org/10.48550/arXiv.1902.01046.  

[3] C. Dwork, “Differential Privacy”, in Encyclopedia of Cryptography and Security, 

H.C.A. van Tilborg, S. Jajodia, Eds. Boston, MA, USA: Springer, 2011, pp.338-340. doi: 

https://doi.org/10.1007/978-1-4419-5906-5_752. 

[4] R. Shokri, and V. Shmatikov, “Privacy-Preserving Deep Learning”, in Proc. 22nd ACM 

SIGSAC Conf. on Comp. and Commun. Sec., Denver, CO, USA, 2015, pp. 1310-1321. doi: 

https://doi.org/10.1145/2810103.2813687. 

[5] B. Jayaraman, and D. Evans, “Evaluating Differentially Private Machine Learning in Practice”, 

in Proc. 28th USENIX Sec. Symp. (USENIX Security 19), Santa Clara, CA, USA, 2019, 

pp.1895-1912. doi: https://doi.org/10.48550/arXiv.1902.08874.  



P-ISSN 2411-1031. Information Technology and Security. July-December 2025. Vol. 13. Iss. 2 (25) 

 

 

308 

[6] R. Podschwadt, D. Takabi, P. Hu, M.H. Rafiei and Z. Cai, “A Survey of Deep Learning 

Architectures for Privacy-Preserving Machine Learning with Fully Homomorphic Encryption”, 

IEEE Access, vol. 10, pp. 117477-117500, 2022. https://doi.org/10.1109/ 

ACCESS.2022.3219049. 

[7] Y. Joo, S. Ha, H. Oh, and Y. Paek, “Efficient Keyset Design for Neural Networks Using 

Homomorphic Encryption”, Sensors 2025, vol. 25 (14), July 2025. doi: https://doi.org/ 

10.3390/s25144320.  

[8] S. Truex et al, “A Hybrid Approach to Privacy-Preserving Federated Learning”, in Proc. 12th 

ACM Workshop on AI and Sec., London, UK, 2019, pp. 1-11. doi: https://doi.org/ 

10.1145/3338501.3357370. 

[9] E. Shalabi, W. Khedr, E. Rushdy, and A. Salah, “A Comparative Study of Privacy-Preserving 

Techniques in Federated Learning: A Performance and Security Analysis”, Information, 

vol. 16, iss. 3, art. 244, 2025. doi: https://doi.org/10.3390/info16030244. 

[10] Z. He, L. Wang, and Z. Cai, “Clustered Federated Learning with Adaptive Local Differential 

Privacy on Heterogeneous IoT Data”, IEEE Internet of Things Journal, vol. 11, no. 1, pp. 137-

146, 2024. doi: https://doi.org/10.1109/JIOT.2023.3299947  

[11] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar, “Semi-supervised 

Knowledge Transfer for Deep Learning from Private Training Data”, in Proc. Int. Conf. on 

Learning Representations (ICLR), Toulon, France, 2017, 16 p. doi: 

http://dx.doi.org/10.48550/arXiv.1610.05755.  

 

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ 

[1] “TechSonar report: Federated learning”, European Data Protection Supervisor, June 2024. 

[Online]. Available: https://www.edps.europa.eu/press-publications/publications/techsonar/ 

federated-learning_en. Accessed on: May 19, 2025.  

[2] K. Bonawitz et al., “Towards federated learning at scale: System design”, in Proc. 2nd SysML 

Conf., Stanford, CA, USA, 2019, 15 p. doi: https://doi.org/10.48550/arXiv.1902.01046.  

[3] C. Dwork, “Differential Privacy”, in Encyclopedia of Cryptography and Security, 

H.C.A. van Tilborg, S. Jajodia, Eds. Boston, MA, USA: Springer, 2011, pp.338-340. doi: 

https://doi.org/10.1007/978-1-4419-5906-5_752. 

[4] R. Shokri, and V. Shmatikov, “Privacy-Preserving Deep Learning”, in Proc. 22nd ACM 

SIGSAC Conf. on Comp. and Commun. Sec., Denver, CO, USA, 2015, pp. 1310-1321. doi: 

https://doi.org/10.1145/2810103.2813687. 

[5] B. Jayaraman, and D. Evans, “Evaluating Differentially Private Machine Learning in Practice”, 

in Proc. 28th USENIX Sec. Symp. (USENIX Security 19), Santa Clara, CA, USA, 2019, 

pp.1895-1912. doi: https://doi.org/10.48550/arXiv.1902.08874.  

[6] R. Podschwadt, D. Takabi, P. Hu, M.H. Rafiei and Z. Cai, “A Survey of Deep Learning 

Architectures for Privacy-Preserving Machine Learning with Fully Homomorphic Encryption”, 

IEEE Access, vol. 10, pp. 117477-117500, 2022. https://doi.org/10.1109/ 

ACCESS.2022.3219049. 

[7] Y. Joo, S. Ha, H. Oh, and Y. Paek, “Efficient Keyset Design for Neural Networks Using 

Homomorphic Encryption”, Sensors 2025, vol. 25 (14), July 2025. doi: https://doi.org/ 

10.3390/s25144320.  

[8] S. Truex et al, “A Hybrid Approach to Privacy-Preserving Federated Learning”, in Proc. 12th 

ACM Workshop on AI and Sec., London, UK, 2019, pp. 1-11. doi: https://doi.org/ 

10.1145/3338501.3357370. 

[9] E. Shalabi, W. Khedr, E. Rushdy, and A. Salah, “A Comparative Study of Privacy-Preserving 

Techniques in Federated Learning: A Performance and Security Analysis”, Information, 

vol. 16, iss. 3, art. 244, 2025. doi: https://doi.org/10.3390/info16030244. 



P-ISSN 2411-1031. Information Technology and Security. July-December 2025. Vol. 13. Iss. 2 (25) 

 

 

309 

[10] Z. He, L. Wang, and Z. Cai, “Clustered Federated Learning with Adaptive Local Differential 

Privacy on Heterogeneous IoT Data”, IEEE Internet of Things Journal, vol. 11, no. 1, pp. 137-

146, 2024. doi: https://doi.org/10.1109/JIOT.2023.3299947  

[11] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar, “Semi-supervised 

Knowledge Transfer for Deep Learning from Private Training Data”, in Proc. Int. Conf. on 

Learning Representations (ICLR), Toulon, France, 2017, 16 p. doi: 

http://dx.doi.org/10.48550/arXiv.1610.05755.  

 

The article was received 15.08.2025. 

 

ОЛЕКСІЙ ШАМОВ 

 

АДАПТИВНА АРХІТЕКТУРА ШІ ДЛЯ РЕАЛІЗАЦІЇ ПРИНЦИПУ  

ПРИВАТНОСТІ ЗА ЗАМОВЧУВАННЯМ ВІДПОВІДНО ДО GDPR 

 

У статті розглядається одна з ключових проблем сучасної інженерії інтелектуальних 

систем: практична реалізація в архітектурах штучного інтелекту принципу приватності за 

замовчуванням (Privacy-by-Design), закріпленого у Загальному регламенті про захист даних 

(GDPR). Існуючі підходи, такі як федеративне навчання, диференційна приватність та 

гомоморфне шифрування, хоча й є ефективними інструментами, при їх статичному 

застосуванні створюють жорсткий компроміс між рівнем захисту персональних даних, 

корисністю (точністю) моделі та обчислювальною ефективністю. Такий уніфікований підхід 

«один розмір для всіх» є неефективним, оскільки призводить або до надмірного захисту 

нечутливих даних, що невиправдано знижує продуктивність, або до недостатнього захисту 

найбільш вразливих категорій інформації. Метою даного дослідження є розробка 

концептуальної рамки нової архітектури штучного інтелекту, яка вирішує цю проблему 

шляхом динамічного, ризик-орієнтованого управління механізмами приватності. 

Результатом дослідження є запропонована адаптивна гібридна архітектура. Наукова 

новизна роботи полягає у відході від статичної моделі застосування технологій підвищення 

приватності (PETs) до гнучкої, багаторівневої системи. Ця система в режимі реального часу 

класифікує дані та компоненти моделі за рівнем чутливості та повʼязаних з ними ризиків. 

Залежно від рівня ризику, архітектура динамічно застосовує оптимальний набір інструментів 

захисту: від базового федеративного навчання з легкими гарантіями диференційної 

приватності для низькоризикових даних до застосування гомоморфного шифрування для 

найбільш критичних обчислень. В основі архітектури лежить модель оптимізації, що прагне 

максимізувати корисність моделі при мінімізації обчислювальних витрат, гарантуючи при 

цьому дотримання заздалегідь визначених порогових значень приватності для кожної 

категорії даних відповідно до вимог GDPR. Такий підхід дозволяє створити більш ефективні, 

безпечні та продуктивні інтелектуальні системи, що відповідають сучасним регуляторним 

вимогам. 

Ключові слова: штучний інтелект, GDPR, приватність за замовчуванням, федеративне 

навчання, диференційна приватність, гомоморфне шифрування, адаптивна архітектура, 

технології підвищення приватності. 
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