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This article addresses one of the key challenges in modern intelligent systems engineering: the
practical implementation of the Privacy-by-Design principle, enshrined in the General Data
Protection Regulation (GDPR), within artificial intelligence architectures. Existing approaches, such
as federated learning, differential privacy, and homomorphic encryption, while effective tools, create
a rigid trade-off between the level of personal data protection, model utility (accuracy), and
computational efficiency when applied statically. Such a unified “one-size-fits-all” approach is
inefficient, as it leads to either excessive protection of non-sensitive data, which unjustifiably
degrades performance, or insufficient protection for the most vulnerable categories of information.
The objective of this research is to develop a conceptual framework for a novel artificial intelligence
architecture that resolves this issue through dynamic, risk-oriented management of privacy
mechanisms. The result of this study is a proposed adaptive hybrid architecture. The scientific novelty
of this work lies in shifting from a static model of applying Privacy-Enhancing Technologies (PETSs)
to a flexible, multi-layered system. This system classifies data and model components in real-time
based on their sensitivity level and associated risks. Depending on the risk level, the architecture
dynamically applies an optimal set of protection tools: from basic federated learning with light
differential privacy guarantees for low-risk data to the application of homomorphic encryption for
the most critical computations. At the core of the architecture is an optimization model that aims to
maximize model utility while minimizing computational costs, ensuring compliance with predefined
privacy thresholds for each data category as required by GDPR. This approach enables the creation
of more efficient, secure, and productive intelligent systems that meet modern regulatory demands.

Key words: artificial intelligence, GDPR, privacy-by-design, federated learning, differential
privacy, homomorphic encryption, adaptive architecture, privacy-enhancing technologies.

1. Introduction. The era of artificial intelligence (Al) and big data has fundamentally and
irrevocably transformed the technological landscape, becoming the driving force of the fourth
industrial revolution. We are witnessing unprecedented innovations in all spheres of human activity:
from personalized medicine, where algorithms predict disease development based on genomic data,
and autonomous transport, which promises to enhance road safety, to intelligent financial systems
capable of detecting complex fraudulent schemes in real-time. At the heart of this revolution lies the
ability of complex algorithms, particularly machine and deep learning models, to identify non-
obvious patterns in vast, multidimensional data arrays and make predictions with superhuman
accuracy. However, this technological progress has a flip side. Its fuel is data, and this analytical
capability is inextricably linked to the processing of personal data on an unprecedented scale. Al
systems today operate not just with names and addresses, but with the most sensitive information
about an individual: biometric indicators, medical diagnoses, behavioral patterns, financial
transactions, and even emotional states. The uncontrolled use of such data creates significant and real
risks to fundamental human rights and freedoms, including the right to privacy, protection against
algorithmic discrimination, preservation of personal autonomy, and even freedom of thought. The
awareness of these risks and the public demand for establishing digital sovereignty of the individual
have led to the emergence of a new generation of data regulation legislation. The most significant and
influential act in this area became the General Data Protection Regulation (GDPR), adopted by the
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European Union in 2016. Thanks to its extraterritorial principle of application, the GDPR quickly
transformed from a regional standard into a de facto global one, forcing organizations worldwide to
reconsider their approaches to working with data. One of the cornerstones and most innovative
provisions of the Regulation is Article 25, which enshrines the principles of “Data Protection by
Design” and “Data Protection by Default”. Together, they form the holistic concept of Privacy-by-
Design, which requires a fundamental paradigm shift. It is a transition from an outdated, reactive
security model, where protection measures were added to an already finished system (“bolted-on
security”), to a proactive approach, where privacy is considered an integral part of the architecture,
embedded in its foundation from the earliest stages of design. This principle requires engineers and
developers not just to check boxes on a list of legal requirements, but to think in terms of privacy as
one of the key functional characteristics of the system. For the engineering and technical community
working in the field of Al, this requirement has become a serious practical and conceptual challenge.
Traditional machine learning architectures, especially centralized models where all data is collected
and processed in a single repository, are inherently contrary to key GDPR principles such as data
minimization. Such centralized repositories not only create a single point of failure but also become
attractive targets for attackers (“honey pots”).

Therefore, the direct implementation of Privacy-by-Design requires a fundamental rethinking
of the entire data lifecycle in Al systems: how data is collected, transmitted, stored, and used for
training models. This task is complicated by the fact that any privacy protection measures inevitably
conflict with other key non-functional requirements of the system. This gives rise to the so-called
triumvirate of compromises, or the “privacy-accuracy-efficiency” trilemma. The implementation of
privacy mechanisms (e.g., adding noise) often reduces the accuracy of predictions (model utility),
while the use of cryptographic methods can increase computational complexity and training time by
orders of magnitude. Finding an optimal, dynamic, and context-dependent balance within this triangle
is one of the most important and complex scientific and practical tasks of modern intelligent systems
engineering.

This article is dedicated to a thorough investigation of this problem and proposes ways to solve
it. We aim to go beyond a simple review of existing privacy-enhancing technologies and their static
combinations. Our goal is to propose a new architectural approach that will allow the creation of Al
systems that not only formally comply with the letter of the law but do so in an efficient, flexible, and
intelligent way. We present a concept that treats privacy not as a constraint, but as a manageable
parameter in a multidimensional optimization problem. This will enable developers to build more
trusted, resilient, and socially responsible intelligent systems, which is a necessary condition for their
sustainable development and societal acceptance.

2. State-of-the-art. An analysis of current scientific research and engineering practices allows
us to identify three main technological pillars on which Al architectures that implement Privacy-by-
Design principles are built: Federated Learning (FL), Differential Privacy (DP), and Homomorphic
Encryption (HE). Each of these approaches has unique advantages and disadvantages, and their
combination opens the way to creating complex hybrid systems.

2.1. Federated Learning as a Decentralized Paradigm

Federated Learning, first proposed by Google researchers, has become a fundamental paradigm
shift from centralized to decentralized machine learning. The main idea of FL is to train a global Al
model on distributed data without the need to transfer this data to a central server. Instead, the global
model is sent to client devices (e.g., mobile phones or hospital servers), where it is locally trained on
local data. After that, only the model updates (e.g., gradients) are returned to the central server, not
the data itself. These updates are aggregated to improve the global model, and the cycle repeats. As
noted in the report of the European Data Protection Supervisor, FL inherently implements the
principle of data minimization, which is a key requirement of the GDPR [1].
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However, as K. Bonawitz et al, rightly point out in their survey [2], federated learning by itself
is not a panacea. Although the raw data remains local, the transmitted model updates may contain
enough information to carry out attacks, such as data reconstruction attacks or membership inference
attacks, which allow an attacker to find out whose data was used for training. Thus, FL should be
considered not as a standalone solution, but as a basic architecture that needs to be supplemented with
other Privacy-Enhancing Technologies (PETs).

2.2. Differential Privacy as a Standard for Privacy Guarantees

Differential Privacy has become the gold standard for providing rigorous, mathematically
provable privacy guarantees. The concept, formalized by C. Dwork [3], is that the result of any
analysis (including the training of an Al model) should not significantly change if the data of one
individual is removed from the initial dataset. In practice, this is achieved by adding carefully
calibrated statistical noise to the data, intermediate results (e.g., gradients in FL), or final results. The
level of privacy is quantitatively measured by the parameter epsilon (g), where a smaller value of €
corresponds to a higher level of protection.

The combination of FL and DP (FL+DP) is the most common approach to building private Al
systems. In such an architecture, clients add differentially private noise to their updates before sending
them to the server. This approach was described in detail and implemented in the work of R. Shokri
and V. Shmatikov [4], where they proposed a collaborative deep learning system that allows
participants to train models while disclosing only a limited part of their updates. However, the main
problem with DP, as convincingly shown by B. Jayaraman et al. in their practical study [5], is the
fundamental trade-off between privacy and model utility. To achieve strong privacy guarantees (low
€), it is necessary to add a significant amount of noise, which can significantly degrade the model's
accuracy. This challenge has spurred the development of more advanced architectures, such as the
PATE (Private Aggregation of Teacher Ensembles) approach proposed by N. Papernot et al. [11],
where privacy is achieved by aggregating the predictions of an ensemble of “teacher models” trained
on disjoint data subsets. Nevertheless, the trade-off dilemma remains a central challenge for engineers
working with DP.

2.3. Homomorphic Encryption as a Tool for Computations on Encrypted Data

Homomorphic Encryption is a cryptographic technique that allows computations to be
performed directly on encrypted data without decrypting it. The result of such computations remains
encrypted, and after decryption, it will be identical to the result that would have been obtained from
computations on plaintext data. From a privacy perspective, this is an ideal solution, as the server
performing the computations (e.g., aggregating gradients in FL) never has access to unencrypted data
or updates. However, as noted in the survey by R. Podschwadt et al. [6], the main obstacle to the
widespread adoption of HE is the extremely high computational costs and significant resource
consumption. Operations on encrypted data are orders of magnitude slower than on plaintext. Despite
significant progress in optimization, such as in the work of Y. Joo et al., where a speedup of up to
2.55 times was achieved for neural networks [7], the practical use of fully homomorphic encryption
for training complex deep learning models remains extremely difficult. Because of this, HE is more
often used for specific, less computationally intensive tasks, such as secure aggregation in FL.

2.4. Hybrid Approaches and Unresolved Problems

Understanding the limitations of each approach has prompted researchers to create hybrid
architectures. One of the indicative works in this direction is the study by S. Truex et al. [8], which
proposes a system that combines FL, DP, and Secure Multiparty Computation (SMC), in particular,
using additive homomorphic encryption. In their system, clients add a smaller amount of differentially
private noise, and secure aggregation using cryptography ensures that the server cannot see individual
updates, which allows for increased model accuracy at the same level of privacy. Similar hybrid
models that combine different PETs are considered in the comparative study by E. Shalabi et al. [9].
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Despite significant progress, the literature analysis reveals a key unresolved problem: existing
approaches, even hybrid ones, predominantly apply a static, unified level of protection to all data and
computational stages. For example, the same privacy budget € is applied to all gradient updates,
regardless of how sensitive the data used to calculate them was. Such a “one-size-fits-all” approach
is inefficient.

It either provides excessive protection for non-sensitive data, leading to an unjustified loss of
accuracy and performance, or proves insufficient for protecting the most vulnerable information, such
as data belonging to special categories according to Article 9 of the GDPR. This lack of flexibility
and adaptability is the main gap that this article aims to address.

3. Formulation of the Article's Goals. Based on the analysis of unresolved problems in the
implementation of Privacy-by-Design, the main goal of this article is to develop a conceptual
framework for an adaptive, risk-oriented hybrid Al architecture. This architecture is intended to
overcome the limitations of static approaches by dynamically managing privacy-enhancing
technologies to optimize the balance in the “privacy-accuracy-efficiency” triad.

To achieve this goal, the following tasks are set:

1. To design a multi-level model for classifying data and computations by privacy risk level.

2. To develop the logic for dynamic selection and configuration of PETs (FL, DP, HE)
according to the identified risk level.

3. To formulate the concept of an optimization model that underlies the architecture and
manages the trade-offs between key system metrics.

The scientific novelty of this work lies in the transition from the paradigm of static, universal
protection to dynamic, context-dependent privacy management. Unlike existing works that focus on
combining PETs in a fixed configuration, we propose an intelligent system that treats the choice of
protection mechanism as a real-time optimization task. The proposed architecture can adapt the level
of protection to the sensitivity of specific data and the vulnerability of individual components of the
Al model. This allows for a more granular and effective fulfillment of GDPR requirements while
minimizing the negative impact on model utility and computational resources. Such a proposal is a
new engineering approach to building trusted intelligent systems.

4. Adaptive, Risk-Oriented Hybrid Architecture. To address the stated challenges and
overcome the fundamental trade-offs inherent in static approaches, we propose the concept of an
Adaptive, Risk-Oriented Hybrid Architecture (AROHA). This architecture is not just a combination
of existing technologies, but a new paradigm for designing intelligent systems, based on flexibility
and contextual awareness. The term “adaptive” signifies the system's ability to dynamically change
its behavior and protection configuration in response to changing data characteristics and privacy
requirements. “Risk-oriented” emphasizes that the driving force for decision-making is not hard-
coded rules, but a continuous assessment of potential risks to the rights and freedoms of data subjects,
as required by the spirit of the GDPR. Finally, “hybrid” indicates that the architecture intelligently
orchestrates the application of a whole spectrum of Privacy-Enhancing Technologies (PETs), using
each where it is most appropriate.

The fundamental principle of AROHA lies in the recognition and practical application of the
fact that not all data and not all computations are equally sensitive. For example, in a medical Al
system, a patient's diagnosis carries significantly higher risks than general demographic statistics, and
the gradients of the last layers of a neural network can reveal more information about specific training
examples than the gradients of the initial layers. Applying a single, most stringent level of protection
to the entire system for example, using homomorphic encryption for all operations without exception
is extremely inefficient and practically infeasible. Such a “one-size-fits-all” approach creates a false
dichotomy: either we choose maximum protection, which leads to exorbitant computational costs and
significant degradation of model accuracy, or we settle for a weaker but more productive level of
protection, which may be insufficient for special categories of data. AROHA moves beyond this
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limited choice by differentiating protection approaches based on a continuous, granular risk
assessment. Instead of building an impregnable fortress around the entire data array, it creates a multi-
layered security system where the most valuable assets are protected by the strongest mechanisms,
and less critical ones by more efficient and lightweight means. To implement this principle, the
proposed architecture consists of three key interconnected modules that together form a closed loop
of privacy management: a sensitivity assessment module, a dynamic PET application module, and an
optimization model.

4.1. Multi-level Sensitivity Assessment Module

The first and primary component of the architecture is the Multi-level Sensitivity Assessment
Module. Its task is to classify both input data and internal components of the Al model by their level
of privacy risk. This classification is dynamic and can take into account various factors, including the
type of data, the context of its use, and the vulnerability of a specific computational stage. A three-
level classification model is proposed:

— Level 1: Low Risk. This level includes data that is not personal or has been effectively
anonymized, as well as computations on those layers of the neural network that are known to be less
prone to information leakage (e.g., initial convolutional layers in computer vision models). Parameter
updates related to this level have a low potential for data reconstruction attacks.

—  Level 2: Medium Risk. This level covers ordinary personal data not belonging to special
categories (e.g., age, gender, geolocation data), as well as computations in the intermediate layers of
the model that may indirectly disclose information about the input data. This level requires a balanced
approach to protection.

—  Level 3: High Risk. This level includes special categories of data as defined in Article 9 of
the GDPR (e.g., medical diagnoses, biometric data, political opinions), financial information, as well
as computations directly related to the model's input and output data. Gradients calculated for these
layers are the most informative and pose the greatest threat in case of a leak. In addition, data
belonging to vulnerable population groups may be assigned to this level.

Classification can be carried out based on metadata, automatic analysis of data semantics (e.g.,
using natural language processing models), and predefined security policies that comply with GDPR
requirements and organizational policies.

4.2. Dynamic PET Application Module

The second component is the Dynamic PET Application Module. This module receives
information from the Sensitivity Assessment Module and, depending on the assigned risk level,
applies the appropriate protection mechanism. Its logic is as follows:

—  For Level I (Low Risk): The basic Federated Learning (FL) architecture is used. To provide
a basic level of protection and comply with general principles, Differential Privacy (DP) with a high
privacy budget (large € value) can be applied to the updates. This adds a minimal amount of noise,
which has almost no effect on the model's accuracy and convergence speed, but creates a formal
privacy guarantee.

—  For Level 2 (Medium Risk): A combination of FL. + DP with strict privacy guarantees
(small € value) is applied. To reduce the amount of noise needed to achieve the target ¢ at the server
level, the aggregation of updates can be protected using cryptographic methods such as Secure
Multiparty Computation (SMC) based on additive homomorphic encryption. This allows the server
to compute the sum of the updates without seeing them individually, which reduces overall risks.

— For Level 3 (High Risk): To process the most sensitive data and perform critical
computations, the strongest tool is applied Homomorphic Encryption (HE). For example, if a model
processes financial transactions to detect fraud, computations directly related to transaction amounts
can be performed in an encrypted form. Although this is computationally expensive, such an approach
is justified for protecting the most valuable information. The use of HE is selective and applies only
to a small part of the computations, making it practically feasible.
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Thus, the system dynamically creates a hybrid protection model that adapts to the data context.

4.3. Optimization Model

At the core of the AROHA framework lies a sophisticated optimization model that governs the
selection and configuration of the privacy-enhancing technologies. Its purpose is to maximize the
overall effectiveness of the system by finding the best possible balance among three competing, and
often conflicting, objectives: the utility of the model, the level of privacy, and the computational costs.
Here, model utility refers to its performance, such as predictive accuracy. The privacy level represents
the strength of the safeguards protecting the data, while computational costs include the necessary
processing power and time. The model operates on a principle of maximizing this utility while
simultaneously minimizing both privacy risks and computational expenses. It achieves this by treating
the task as a multi-objective optimization problem. The system assigns different levels of importance
or weights to each of these three factors, which can be tuned according to the specific requirements
of the application. For instance, in a medical diagnostics system, the weight for privacy would be set
extremely high, whereas for a less sensitive application, the weights for utility and efficiency might
take precedence. Crucially, this optimization does not happen in a vacuum. It is bound by a
fundamental rule: for every category of data, the level of privacy must never fall below a pre-defined
minimum threshold. This threshold is established by security policies in strict accordance with the
legal mandates of GDPR, ensuring that the most sensitive data (e.g., High-Risk Level 3) always
receives the robust, non-negotiable protection it requires. In practice, this optimization model
functions as an intelligent controller. At each round of the federated learning process, or for each new
batch of data, it assesses the context and decides on the most appropriate combination of PETs to
deploy. This transforms the static, one-time choice of an architecture into a continuous, dynamic
process of intelligent resource allocation, which is the key innovation of the proposed approach.

5. Results and Discussion. The main result of this study is the development and justification
of a conceptual framework for an adaptive, risk-oriented hybrid architecture (AROHA). This
framework is not just another configuration of existing technologies, but offers a new engineering
philosophy for implementing Privacy-by-Design in complex Al systems. Unlike the vast majority of
existing solutions that apply unified, static protection mechanisms to the entire data stream, the
proposed architecture provides dynamic, granular, and context-aware privacy management. The
novelty of the approach lies in the creation of an intelligent orchestration layer that makes real-time
decisions about which protection tool, with which parameters, and to which specific data or
computations to apply. This allows for a much more effective and flexible balance between three
critical, often conflicting, goals: compliance with strict GDPR requirements, preservation of high
model accuracy (utility), and minimization of computational costs. In essence, AROHA transforms
privacy from a rigid constraint into a manageable, optimized system parameter.

To gain a deeper understanding of the contribution of the proposed approach, let us compare it
with the results and conclusions obtained by other leading researchers in this field. The pioneering
works that laid the foundation for private machine learning, particularly the work of R. Shokri and V.
Shmatikov [4], brilliantly demonstrated the very possibility of effectively combining distributed deep
learning with differential privacy. However, their approach, though revolutionary, applied a single
protection mechanism and level to all participants and their updates.

AROHA develops this idea by adding a superstructure in the form of an intelligent controller
that differentiates the level of protection depending on the properties of the data itself. This allows
for a partial solution to the fundamental problem of the trade-off between privacy and accuracy, which
was so sharply and convincingly highlighted by B. Jayaraman et al. [5] in their landmark study. They
empirically showed that to achieve strong, formal privacy guarantees with a unified approach, the
accuracy of complex models can drop to an unacceptable level. AROHA directly responds to this
criticism: our architecture proceeds from the assumption that applying such strong guarantees
everywhere is strategically wrong. Instead, it selectively applies them only where the high risk
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justifies the inevitable loss of utility, allowing the system as a whole to function with much higher
accuracy.

More modern hybrid models, similar to the one proposed by S. Truex et al. [8], which combine
FL, DP, and cryptography (SMC), are a significant step forward compared to mono-technology
approaches. However, even in their system, the choice and configuration of these tools remain static,
determined at the design stage.

AROHA proposes the next logical step in evolution: to make the very combination of these
tools dynamic and context-dependent. For example, instead of always using computationally
expensive secure multiparty computation for aggregation, AROHA can activate this mechanism only
for updates classified as belonging to medium and high-risk levels, using simpler and faster methods
for low-risk updates. A similar argument applies to research in the field of homomorphic encryption.
Works such as that of Y. Joo et al. [7] focus on optimizing the technology itself from within, trying
to reduce its computational costs. AROHA offers a complementary approach: instead of trying to
perform all model training using HE, which is currently impractical, our architecture proposes a
“surgically precise”, selective application of HE only to those computations where it is absolutely
necessary. This significantly reduces the overall computational load on the system.

An approach similar to ours for granular privacy management can be found in the article by
Z. He et al. [10], where they propose a system that adapts DP parameters depending on the level of
trust in the participants of federated learning.

Our proposal is more general and fundamentally more consistent with the GDPR, as it is based
not on the subjective category of trust, but on the objective properties of the data itself. The
requirements of the GDPR, especially regarding special categories of data, are tied to the nature of
the information, not the reputation of its processor.

Of course, the proposed architecture is not without its own challenges and limitations. The
practical implementation of the Multi-level Sensitivity Assessment Module is a complex engineering
task that requires the development of accurate, fast, and reliable algorithms for automatic data
classification. In addition, the optimization controller itself creates additional computational overhead
and could potentially become a bottleneck in the system. However, we hypothesize that with proper
implementation, the gains in resource efficiency and preservation of model accuracy will far outweigh
these costs, especially in large-scale, industrial systems.

Thus, the proposed architecture is not just a theoretical construct, but also a practical
engineering guideline. It shifts the discussion in the professional community from the question of
“whether to use PETs?” to the much more productive and relevant question of “how to use them
intelligently, flexibly, and adaptively to build trusted Al systems?”.

6. Conclusions. This study was dedicated to solving one of the most fundamental and complex
problems at the intersection of artificial intelligence and law: the effective and pragmatic
implementation of the Privacy-by-Design principle, enshrined in the GDPR, in the architectures of
modern intelligent systems. The analysis of the state-of-the-art confirmed that existing technological
tools federated learning, differential privacy, and homomorphic encryption are powerful, yet limited
in their isolated application. We concluded that their static, unified use, where a single level of
protection is applied to the entire system, inevitably leads to an inefficient and rigid trade-off within
the “privacy-accuracy-efficiency” trilemma. This approach forces engineers to choose between
insufficient protection for sensitive data or excessive protection for non-critical information, which
in both cases is a suboptimal solution from both a technical and a regulatory perspective.

In response to this identified gap, the article proposed and thoroughly substantiated the
conceptual framework of a new adaptive, risk-oriented hybrid architecture (AROHA). The key idea
underlying our proposal is a radical departure from the static, monolithic protection paradigm in favor
of flexible, intelligent, and dynamic management of privacy mechanisms. The proposed architecture,
consisting of three synergistic components a module for multi-level data classification by sensitivity,
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a module for the dynamic application of an optimal set of PETs for each risk level, and a governing
optimization model transforms the problem of ensuring privacy from an immutable constraint into a
manageable parameter. This allows the system to adapt to the context in real-time, applying a level
of protection that is adequate to the risks associated with specific data and computations.

The main contribution of this work lies in the formulation of a new engineering approach that
serves as a practical blueprint for building the next generation of trusted Al systems. We propose
creating more flexible, efficient, and granularly managed systems that not only formally comply with
GDPR requirements but also embody its spirit. This approach avoids unnecessary degradation of
model accuracy by protecting non-sensitive data with lighter methods, while simultaneously
concentrating powerful, albeit computationally expensive, tools like homomorphic encryption on
protecting the most vulnerable categories of information. This is not only a technical but also an
economic optimization, making the implementation of robust privacy guarantees more realistic for a
wide range of applications.

Prospects for further research are broad and multifaceted.

Firstly, an urgent practical step is the development and implementation of a software prototype
of the proposed architecture. Its creation will allow for comprehensive empirical studies to
quantitatively assess the gains in accuracy and performance compared to existing static approaches
on standard benchmark datasets.

Secondly, further development of algorithms for the Sensitivity Assessment Module requires
significant attention. This is a complex scientific task that demands the creation of lightweight and
effective methods for automatic semantic data classification and identification of vulnerable model
components in real-time, possibly using meta-learning.

Thirdly, a deep theoretical investigation of the properties of the optimization model is an
interesting direction, including formal proofs of convergence guarantees and analysis of its
computational complexity when using various optimization methods, from classical to reinforcement
learning-based. Finally, the most important direction is the extension of the AROHA philosophy itself
beyond privacy. We hypothesize that the proposed risk-oriented, adaptive approach can be
generalized to manage other ethical aspects of Al, such as fairness, transparency, and explainability.
This opens the way to the creation of comprehensive frameworks for managing trust in Al
(Trustworthy AI), where the system can dynamically balance between different, often conflicting,
ethical requirements, which is one of the most difficult challenges on the path to creating responsible
artificial intelligence.
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OJIEKCIN IIAMOB

AJIAIITUBHA APXITEKTYPA LI JJI51 PEAJIIBALIT IPUHIAITY
INPUBATHOCTI 3A 3AMOBYYBAHHSAM BIAITIOBIJIHO 10 GDPR

VY craTTi po3MIAAEThCs O/HA 3 KIIIOYOBHUX MPOOJEM Cy4yacHOI 1HXKEHepil 1HTEeJNEeKTyalbHUX
CHCTEM: MpaKTUYHA peali3alis B apXiTEKTypax IITYYHOTO IHTEJEKTY NMPHHLIMUITY MPHUBATHOCTI 3a
3amoBuyBaHHAM (Privacy-by-Design), 3akpimieHoro y 3arajabHOMy perjlaMeHTI PO 3aXUCT JaHUX
(GDPR). Ichyroui migxonm, Taki sk ¢enepaTuBHE HaBYaHHA, AW(EpeHIiiHA MPHUBATHICTH Ta
romoMophHe mmdpyBaHHS, Xoua U € e(PEeKTHBHMMH I1HCTPYMEHTaMH, HpPHU iX CTaTUYHOMY
3aCTOCYBaHHI CTBOPIOIOTH JKOPCTKMM KOMIIPOMIC MDK pPIBHEM 3aXHCTy IEPCOHAJIbHHUX JaHUX,
KOPHCHICTIO (TOYHICTIO) MOJIENi Ta OOYUCIIIOBATIBbHOIO ehekTrBHICTIO. Takuii yHi(hiKOBaHMHA MMiIXin
«OOWH PO3MIp Ui BCiX» € Hee(heKTHMBHHM, OCKUIBKH MPU3BOIUTH a00 MO0 HAAMIPHOTO 3aXHCTY
HEYyTJIUBUX JIaHMX, 110 HEBUIIPABIAHO 3HMXKY€E MPOAYKTUBHICTb, 200 O HEAOCTATHBOI'O 3aXUCTY
HalWOUIbII Bpa3aMBUX KaTeropid 1H@opmaiii. MeTow JaHOro MOCHIIKEHHS € po3polKka
KOHIIENITYyaJIbHOI pPaMKHU HOBOI apXiTEKTypH IUTYYHOIO I1HTEJEKTY, sIKa BHpIIIye L0 Mpodiemy
LUIIXOM JUHAMIYHOTO, pU3HK-OPIEHTOBAHOTO YIIPABIIIHHSA MEXaH13MaMU MPUBATHOCTI.

PesynbratroM mociipkeHHS € 3anporNoOHOBaHa aJanTHBHA TiOpuaHa apxiTekrypa. HaykoBa
HOBM3HA POOOTH IMOJIATAE Y BIAXOJI BiJ CTATUYHOT MOJEJI 3aCTOCYBAaHHS TEXHOJIOTIN MiJBUIIICHHS
npusaTtHocTi (PETSs) o rayukoi, 6aratopiBHeBoi cucteMu. Lls cuctema B peskuMi peaibHOro 4acy
KJacu(ikye JaHi Ta KOMIIOHEHTH MOJIENI 32 pIBHEM UYYTIMBOCTI Ta MOB’A3aHUX 3 HUMHU PHU3HUKIB.
3anekHo BiJ PiBHS PU3UKY, apXITEKTypa JMHAMIYHO 3aCTOCOBYE ONTUMAaNIbHUM HaOlp IHCTPYMEHTIB
3aXUCTy: BiA 0a30BOro QenepaTMBHOIO HaBUYaHHS 3 JIETKMMM TapaHTisiMM JUdepeHIiHHol
MPUBATHOCTI Ul HU3BKOPU3UMKOBHUX JAHMX JO 3aCTOCYBaHHS roMoMOp(hHOro mudpyBaHHS i
HaNWOUIbII KPUTUYHUX OOUYUCIIEHb. B OCHOBI apXITEKTypH JIEKUTh MOJEIb ONTUMI3allli, 1110 IparHe
MaKCHMI3yBaTl KOPHCHICTh MOJENI MpU MiHIMI3alii 0OYMCIIIOBAIbHUX BUTPAT, TapaHTYIOUU IpU
[IbOMY JOTPUMAaHHS 3a3JaJIeri/[b BH3HAYEHHX IOPOTOBMX 3HA4YeHb NPUBATHOCTI IS KOXKHOI
kateropii ganux BianosiaHo 10 BUMor GDPR. Takuii miaxia 103BoJiss€ CTBOPUTH OLIbII €(DEKTHBHI,
Oe3rneyHi Ta MPOJYKTHBHI 1HTENEKTYyaJdbHI CUCTEMH, L0 BIAMOBIIAIOTh CYYaCHUM PEryJISATOPHUM
BHUMOTaM.

Kurouosi cioBa: mryuynuii intenekr, GDPR, npuBatHicTh 3a 3aMOBUYBaHHSM, QeepaTUBHE
HaBYaHHS, OUQepeHIliiiHa NpuBaTHICT, roMoMopdHe MmupyBaHH], aJanTHBHA apXITEKTypa,
TEXHOJIOT11 MiIBUIIEHHS IPUBATHOCTI.
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