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The experience of the past three years of full-scale warfare testifies to the dynamic
transformation of the conceptual foundations of combat operations and the shifting prioritization of
the means employed to conduct them. The emergence and increasingly active use of various
unmanned systems, the widespread deployment of precision-guided munitions, and the development
of advanced electronic warfare capabilities have collectively underscored the strategic significance
of the radio frequency spectrum. The provision of continuous spectral monitoring and the detection
of anomalous activity in the electromagnetic environment have become critically important
components of electronic warfare systems, signals intelligence, and secure communications
networks. Traditional approaches to signal analysis — based on fixed thresholds, heuristic rules, or a
priori statistical assumptions — are proving insufficiently effective in the highly dynamic and noise-
intensive environment of the modern electromagnetic battlespace.

In this context, there arises a need to investigate innovative approaches, particularly machine
learning methods, for their ability to enable the automatic detection of anomalous signals without
reliance on labeled data. Such solutions are expected to enhance the accuracy, adaptability, and
response speed of spectral monitoring systems.

A research methodology is proposed to assess the feasibility of applying machine learning
methods to the task of anomaly detection in the radio frequency spectrum, taking into account the
complexity of the data structure, its high dimensionality, and the limited availability of a priori
information regarding anomalous samples. This research methodology encompasses the following
stages:

— formulation of the experimental task;

— selection of anomaly detection methods for experimental evaluation;

— determination of evaluation metrics;

— selection and/or generation of test datasets;

— direct execution of the experimental study;

— analysis and assessment of the results;

— visualization and interpretation of the obtained findings;

— formulation of conclusions based on the experimental outcomes.

This article focuses on the theoretical framework of the experimental study. Practical results
will be published separately.

Keywords: artificial intelligence, anomaly detection, machine learning, radio frequency
spectrum, classification, Analytic Hierarchy Process (AHP), Isolation Forest, Autoencoder, Local
Outlier Factor (LOF), One-Class SVM, Generative Adversarial Networks (GAN).

Problem statement. Classical approaches to anomalous signal detection are based on statistical
criteria and hypotheses regarding data distributions. They are based on the assumption that “normal”
data belong to high-probability regions of the statistical model, while anomalies occur in low-
probability regions [1].
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A common approach is the three-sigma rule (30), which assumes that the measurements
follow a normal distribution. According to the 3o, approximately 99.7% of the values of a random
variable fall within the interval:

m—3o0, m+3o0,

where m is the mean value and o is the standard deviation [1]. Any measurement falling outside
this interval is considered a potential anomaly — an outlier.

The advantage of the 3o lies in its simplicity of implementation and interpretation: the
threshold value is easy to compute and explain. This method has been widely used in quality control
and technical diagnostics, where deviations that are highly unlikely under normal operating
conditions are considered anomalous.

The primary drawback of this approach is the assumption of a normal distribution. In real-world
radio signals, the noise distribution may deviate significantly from Gaussian behavior (e.g., due to
the presence of impulsive interference), meaning that a fixed threshold based on the 30 may result in
excessive false positives or missed anomalies, particularly when the baseline noise level exhibits
heavy “tails”. Moreover, the 3o is insensitive to small deviations and may fail to detect anomalies
whose amplitude is less than three standard deviations. In cases where the distribution is unknown or
non-normal, more robust criteria are often employed.

Similarly, the “box plot rule” (interquartile range method, IQR) defines normal values as
those falling within the range of [1]:

Q —1,5IQR, Q, +1,5IQR
where Q, and Q, are the lower and upper quartiles, respectively;

IQR=0Q,-Q,.
Points lying outside this range are considered statistical outliers (anomalies). For a normal
distribution, the IQR-based boundaries approximately correspond to the interval . +2,70 (which

covers about ~ 99,3% of the data) [1].

Thus, the IQR method is somewhat more sensitive to outliers (and may detect more anomalies)
compared to the 3o . In particular, experimental results have shown that the IQR method can produce
a higher number of false alarms, whereas the 3o yields more stable results under the assumption of
normality [1].

The null hypothesis of the Grubbs' test states that there are no outliers, while the alternative
hypothesis asserts the presence of at least one anomalous value [2]. The test statistic is calculated as:
c = mx [y =X

S
where X is the mean value of the time series X ;

s Is the standard deviation of the time series X .

For a two-sided test, the null hypothesis of no outliers is rejected at the significance level «if:

2
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where t .y, v, denotes the upper critical value of the t-distribution withs N —2 degrees of
freedom at the significance level «/(2N).
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For a one-sided test o/ (2N) is transformed into ««/ N . The largest point in the time series that

exceeds the test statistic is classified as an anomaly [2]. In other words, the observation with the
largest absolute value is considered an anomaly if it is statistically inconsistent with the rest of the
sample. The Grubbs' test is effective for detecting a single outlier; however, it must be applied
iteratively to detect multiple anomalies, which may reduce its accuracy (generalizations for multiple
outliers exist, such as the Tietjen—Moore test or the generalized extreme Studentized deviate (ESD-
test) [2].

In addition to the Grubbs' test, the statistical toolkit includes other methods, such as Dixon’s Q
test for small samples, Mahalanobis distance for multivariate data, and the chi-squared > goodness-
of-fit test, among others [3].

These methods offer a simple and interpretable means of anomaly detection but critically
depend on assumptions regarding the data distribution (e.g., normality) [4]. When the actual signal
distribution significantly deviates from these assumptions, the accuracy of such methods deteriorates
sharply.

Thus, classical methods for radio signal analysis do not provide sufficient real-time operational
responsiveness under conditions of high spectral density, active jamming countermeasures, and
rapidly changing signal parameters. This necessitates the adoption of innovative approaches,
particularly machine learning methods capable of autonomously detecting anomalous signals in high-
dimensional data without the need for a priori labeled samples.

Analysis of recent research and publications. A comparison between traditional methods of
anomaly detection in the radio frequency spectrum and machine learning (ML) approaches
demonstrates that the latter enable the identification of anomalies within high-dimensional data and
complex radio signal patterns, outperforming simple statistical criteria in terms of flexibility [4]. Most
of these approaches operate in an unsupervised or semi-supervised learning mode, where the model
is trained solely on normal data and attempts to detect deviations from it. In other words, the algorithm
learns to recognize the "normal” behavior without access to anomalous samples and subsequently
flags observations that significantly deviate from this learned norm as potential anomalies.

In [5], the authors investigate various ML algorithms. The approach, based on the One-Class
Support Vector Machine (One-Class SVM), is an unsupervised learning algorithm that seeks to
delineate the boundary of the region containing normal data, thereby identifying new points outside
this region as anomalies. In this setting, the algorithm attempts to find a boundary that encloses the
majority of the data (normal points) while separating them from the origin in the feature space. The
One-Class SVM is trained exclusively on normal data and distinguishes between normal and
anomalous examples by predicting whether a new instance falls within the learned region (norm) or
is considered an “outlier”. Geometrically, this can be interpreted as constructing a hypersurface (or a
sphere) around the normal data; new points located significantly outside this region are classified as
anomalies. Formally, the following problem is solved:

.1 2 1 &
ming i "+

w,&,p
subject to the conditions: | w-X, >p—¢;,&, >0, :L_n},

where v is the parameter that determines the proportion of anomalies.

Advantages of One-Class SVM: it can model fairly complex boundaries (not only spherical
ones) and takes into account multidimensional dependencies. When applied to radio signals, the One-
Class SVM is capable of simultaneously considering multiple signal features (e.g., energy at different
frequencies) and detecting complex anomalous patterns.
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Disadvantages: high computational complexity (training an SVM typically scales as O(n?)

with respect to the number of samples, which does not scale well to large datasets), the need for
careful tuning of the kernel and parameters (which significantly affect the results), and a lack of
transparency — making it difficult to interpret why a particular point is classified as anomalous beyond
the fact that it lies outside the learned boundary.

Autoencoders are neural networks capable of learning to compress and reconstruct data. They
have found widespread application in anomaly detection tasks for radio signals [5]. The architecture
of an autoencoder consists of two main parts: an encoder, which compresses the input data (e.g., a
digitized radio signal or its spectrum) into a low-dimensional latent representation (bottleneck), and
a decoder, which reconstructs the output from this compressed code.

The network is trained on normal data in such a way as to minimize the reconstruction error

(the difference between the input and the reconstructed signal):
2

L=[x—%

where x is the input signal;

X is its reconstruction by the network.

If the L exceeds a predefined threshold, the signal is classified as anomalous.

Advantages of autoencoders:

— flexibility — they do not require an explicit model of the data distribution and can capture
nonlinear dependencies;

— context-awareness — for example, a recurrent autoencoder can take into account the temporal
structure of the signal,

— no need for labeled data — like other models discussed, the autoencoder is trained solely on
unlabeled (normal) data.

Disadvantages:

— require a significant amount of data and computational resources for training (especially
deep networks);

— risk of overfitting — if the network is too powerful, it may begin to accurately reconstruct
even anomalous data encountered during training, thereby reducing sensitivity;

— difficulty in architecture and hyperparameter selection (e.g., bottleneck size, number of
layers, etc.).

The interpretability of autoencoders is limited — at best, one can analyze which features
contribute most significantly to the reconstruction error, but the neural weights themselves are
difficult to interpret physically. For normal signals, the autoencoder accurately reconstructs the
structure, whereas for anomalous signals, the reconstruction error is significantly larger [5].

The application of autoencoders to radio engineering data has been successfully demonstrated
in the literature. In particular, a deep autoencoder and its variant, the LSTM-autoencoder, have been
employed to detect unauthorized transmissions in shared spectrum environments by analyzing the 1Q
data of Wi-Fi/LTE signals [4].

Another approach is based on the use of convolutional autoencoders (CAE) to analyze
spectrograms as images, which enables achieving high accuracy in anomaly detection within wireless
networks [6].

Isolation Forest (IF) is an ensemble algorithm based on decision trees, specifically designed
for anomaly detection. Its key idea is the random isolation of observations: the algorithm constructs
numerous random trees, each time randomly selecting a feature and a threshold to split the data [7].
Unlike density-based or distance-based methods, IF directly isolates anomalous points without
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modeling the normal data distribution. The core concept is that anomalies are objects that are “easy
to separate” from others, as they are rare and have feature values that differ significantly. Intuitively,
anomalous points (which are located far from the main cluster of normal data) are isolated after fewer
splits, meaning that the path from the root to the leaf node is shorter for anomalies [8].

In contrast, for normal points that are grouped together, more random splits are required to
completely isolate them. Thus, the average path length to isolation (averaged over the ensemble of
trees) serves as a measure of anomaly: shorter average paths correspond to more “isolated”, and

therefore more anomalous, points [8]:
_Eh(x)

s(x,n)=2 ™

where E h(x) is the average path length for point X;

c(n) is the normalization constant.

The IF algorithm offers several significant advantages. First, it exhibits high computational
efficiency: it scales linearly with respect to the number of data points and features. Second, Isolation
Forest performs well in high-dimensional spaces and does not require explicit calculation of distances
or densities, which is particularly useful when features are heterogeneous or difficult to normalize.
As noted in research studies, the algorithm is effective for high-dimensional data and has become a
popular choice for anomaly detection [8]. Third, IF does not require labeled data and is minimally
dependent on hyperparameters. Fourth, IF is fairly robust to noise in the data: if a few anomalous
points are present in the training set, they are likely to be isolated at shallow depths in most trees and
assigned high anomaly scores, but they do not significantly affect the isolation of normal points
(unlike, for instance, the mean and standard deviation estimates, which can be heavily distorted by
strong outliers).

In radio engineering applications, IF has been employed, for example, for detecting radio
frequency interference and anomalous spectral patterns. However, the effectiveness of IF may
degrade if the proportion of anomalies in the training data is substantial or if the anomalies are not
well-separated in the feature space.

The Local Outlier Factor (LOF ) is another popular unsupervised machine learning method.
It estimates the data density within the local neighborhood of each point and compares it to the density
of its neighboring points [9]. The underlying idea is that normal objects have a density similar to that
of their nearest neighbors, whereas anomalous points (outliers) exhibit significantly lower local
density.

The algorithm computes an LOF score for each point, which represents the ratio of the average
local reachability of its neighbors to the local reachability of the point itself.

zk: Ird, (x)
LOF(X): i=1 Irkdk(X) ’

where Ird, (x) is the local density of points within a neighborhood of radiusk .

If this factor significantly exceeds 1, the point is considered to be sparsely populated relative to
its neighbors and thus potentially anomalous.

Advantages of LOF : the ability to detect local anomalies — a point may be an outlier relative
to its immediate neighborhood even if its global value is not extreme. This is particularly important
for non-uniform data. For example, in the radio spectrum, certain frequency bands may be densely
populated while others have sparse signals — LOF can detect an anomalously strong signal in a quiet
band, even if a similar signal strength would be considered normal in a noisy band.
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Disadvantages: calculating k -nearest neighbors for each point can be computationally
expensive (a naive realization is — O(n?)), although acceleration techniques such as k -d trees exist.

LOF is harder to scale to very large datasets compared to tree-based algorithms. Moreover, the result
of LOF depends heavily on the parameter k (the size of the local neighborhood), and improper
selection of kcan lead either to missed anomalies (if kis too small and noise is mistaken for
anomalies) or to blurring of the local structure (if k is too large and the algorithm becomes effectively
global). From an interpretability perspective, LOF provides a numerical score for each point, but
explaining the anomaly still requires analyzing its neighbors — specifically, how the point differs from
them (e.g., significantly lower density indicates a gap in the local distribution).

In addition to the methods mentioned above, generative models are also being explored in the
context of radio spectrum monitoring tasks. Generative Adversarial Networks (GAN ) represent an
approach where two neural networks — a generator and a discriminator — are trained in a competitive
manner: the generator attempts to produce fake data resembling real data, while the discriminator
strives to distinguish between real and fake samples. For anomaly detection, a GAN is typically
trained on normal data, and subsequently, either the discriminator (or, in some cases, the generator)
is used to evaluate new samples [4].

When applied to radio signals, a GAN can generate spectra of normal signals; if a real signal
cannot be well distinguished by the discriminator from generated ones (or if the generator fails to
accurately reproduce it), this serves as an indication of anomaly.

GAN:Ss are capable of modeling highly complex data distributions and, in theory, can capture
even the most subtle anomalies. However, training GANSs is an unstable process that requires careful
balancing between the generator and the discriminator. The absence of a clear loss function further
complicates convergence. Moreover, like other deep models, GANs involve millions of parameters
and thus represent a “black box” from an interpretability perspective.

The application of GANs for streaming anomaly detection in radio data is currently an active
area of research, although notable progress has already been made. For example, in [4] the authors
combined an autoencoder and a GAN for radio spectrum analysis: first, the autoencoder was used to
obtain a compressed representation, and then a sigma-criterion was applied to the
generator/discriminator error.

Contemporary approaches often advocate for combining multiple machine learning methods or
employing ensemble techniques to enhance reliability.

The aim of this article is to develop a research methodology for assessing the feasibility of
applying machine learning methods to the task of anomaly detection in the radio frequency spectrum.
The characteristic features of this task include the complex structure of high-dimensional data and
the limited availability of a priori information regarding anomalous samples. To achieve this aim, the
following objectives are addressed:

1. Analysis of current approaches to anomaly detection based on machine learning algorithms.

2. Development of a methodology for the experimental evaluation of selected algorithms on
synthetic radio signal data.

3. ldentification of methods for analyzing and visualizing the results of the experimental study.

The exposition of the main research material. The objective of the experimental study is to
conduct a comprehensive comparative analysis of the effectiveness of modern machine learning
methods in anomaly detection tasks within the radio frequency spectrum. The sequence of stages of
the experimental study is presented in Fig. 1.

22



P-ISSN 2411-1031. Information Technology and Security. January-June 2025. Vol. 13. Iss. 1 (24)

Experimental Investigation of Machine Learning Methods
. . . Visualization and
Research Problem .| Preparatory Experimentation Analysis of Interpretation of | Research
Statement Phase Phase Results b Conclusions
Results
1 2 3 4 6
2.1. Selection of ML 3.1. Execution of 4.1. Construction of 3.1. Post-processing of
methods for the study experiments on confusion matrices results using Analytic
i diverse datasets hierarchy process
2.2. Selection of 4.2, Computation of
evaluation metrics ROC curves
2.3. Selection and 4.3. Compurtation of
construction of datasets Precision-Recall
i ) curves
2.4. Hierarchical
decomposition of the 4.4. Determination of
research problem aggregate metrics

Figure 1 — Research Stages

During the preparatory phase of the study, the ML methods whose effectiveness will be
evaluated are selected. In addition, evaluation metrics are chosen. Ready-made datasets are selected
or synthetic datasets are generated. Furthermore, hierarchical decomposition of the task of selecting
the optimal ML method is performed during this phase. The content of each task within the
preparatory phase of the experimental study is detailed below.

Selection of ML methods for evaluating their effectiveness in anomaly detection tasks
within the radio frequency spectrum. A review of the literature enabled the selection of five
methods [4]-[9]. These methods are:

— Isolation Forest;

Local Outlier Factor;
— One-Class SVM;
Autoencoder;

— Generative Adversarial Networks.

Selection of evaluation metrics for anomaly detection methods. Anomaly detection is the
task of identifying rare, atypical instances within a dataset. A key feature of this task is class
imbalance: anomalies occur very infrequently, which means that a simple accuracy measure can be
misleading. For example, a model that always classifies every instance as “normal” would achieve
very high classification accuracy if anomalies constitute only a small fraction of the data [10].
Therefore, specialized metrics are used to evaluate anomaly detection models, focusing specifically
on the quality of detecting the rare class (anomalies).

For the formal definition of evaluation metrics, the Confusion Matrix is used, which includes
four indicators:

— TP (True Positives) is the number of anomalies correctly identified as anomalies;

— TN (True Negatives) is the number of normal samples correctly identified as normal,;

— FP (False Positives) is the number of normal samples incorrectly classified as anomalies;

— FN (False Negatives) is the number of anomalies that the model failed to detect, i.e.,
incorrectly classified as normal.

Ha ocHoOBI1 3HaueHb oux MMOKa3HUKIB PO3paxOBYIOTh TaK METPUKHU.

1) Accuracy reflects the overall proportion of correct decisions among all examples [11]:

TP+TN (1)
TP+TN 4+ FP+EN

Despite its widespread use, Accuracy can be misleadingly high in the presence of significant
class imbalance (when anomalies are extremely rare).

Accuracy =
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2) To avoid bias in situations with a strong predominance of one class, Balanced Accuracy is
used — the arithmetic mean between the Recall for anomalies and the Specificity for normal samples:

Balanced Accuracy = _TP + ™ . (2)
2(TP+FN TN +FP

This metric treats the detection of both classes as equally important, which is particularly
relevant when the cost of a false positive ( FP ) is comparable to the damage caused by missing an
anomaly (FN ).

In anomaly detection evaluation, the primary focus is placed on how well the algorithm
identifies all deviations (Recall) and how often it incorrectly labels normal points as anomalies
(Precision).

3) Precision [11]:

Precision = _TP (3)
TP+ FP
reflects the proportion of detected anomalies that are truly anomalous, thereby reducing the risk of an
excessive number of false alarms.
4) Recall:
Recall = —1° 4)
TP+FN
indicates the proportion of true anomalies that have been correctly identified, thereby reducing the
likelihood of missing an anomaly. Instead of the term Recall, the designation TPR (True Positive
Rate) is often used.

In the context of anomaly detection, Recall is considered a critical metric when missed
anomalies could lead to severe consequences (e.g., fraud) [10]. High Precision , on the other hand, is
essential when minimizing the number of false alarms is a priority (e.g., in medical or industrial
systems).

5) To balance Precision and Recall within a single metric, the F1-score is used — the harmonic
mean of these two measures [11]:

‘ Recall - Precision (5)
Recall + Precision

A low value of either component significantly reduces the F1, making it a generalized metric
for evaluating anomaly detection performance at a specific threshold.

6) Specificity (or True Negative Rate) is the probability of correctly classifying a normal
sample:

F1=2

_IN_ (6)
TN +FP

In anomaly detection, it measures how rarely the method incorrectly labels normal instances as
anomalies (i.e., it corresponds to a low FP ). With high specificity, there are virtually no unnecessary
alarms [13].

7) FPR (False Positive Rate) — the percentage of normal samples incorrectly labeled as
anomalies:

Specificity =

FP
= (7)
TN +FP
8) The ROC-curve (Receiver Operating Characteristic) is constructed by varying the decision
threshold and depicts the relationship between TPR (Recall) ra FPR . The quantitative interpretation

FPR
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of the ROC curve is provided by the AUC = 0,1 (Area Under the ROC Curve) — the area bounded

by the ROC curve and the axis of the false positive rate (FPR). Values of AUC-ROC, close to 1
indicate a strong ability of the algorithm to distinguish between anomalous and normal samples across
different thresholds [12].

The advantagec of the AUC-ROC is its relative independence from overall class
imbalance [12]. It reflects the ranking power of the classifier — how well it ranks anomalies higher
than normal instances.

The drawback is that, under extreme imbalance between positive and negative examples, even
models that perform poorly in practical applications can sometimes achieve high AUC-ROC
values [12].

9) FNR (False Negative Rate) — the percentage of anomalies that were missed:

Re_N_ (8)
FN +TP

In anomaly detection tasks, a high FNR indicates that the model has “missed” a portion of the
anomalies and may be unacceptable in critical applications.

10) The Matthews Correlation Coefficient (MCC ) takes into account all elements of the
confusion matrix and can evaluate the balance of classification even in the presence of significant
class imbalance [11]. Formally:

TP-TN —FP-FEN

MCC = . (9)
JTP+FP TP+FN TN +FP TN +FN

A value of 1 corresponds to perfect classification, 0 indicates random guessing, and -1 signifies
complete disagreement between predictions and actual outcomes.

11) Cohen’s Kappa Coefficient reflects the agreement between the obtained classification and
the true labels, adjusted for “random agreement”:

p=Lo"Pe (10)
1-p,
TP+TN
TP+TN +FP+FN

TP+FP TP+FN TN+FP TN+FN | -
P = is the expected probability of agreement.

TP+TN+FP+FN °
A value of 1 indicates perfect agreement, while 0 corresponds to the level of agreement
expected by random chance.
12) G-mean is considered as the geometric mean between TRP and TNR:

G-mean = ™ __TN . (11)
TP+FN TN+ FP

This metric "encourages” the algorithm to simultaneously maintain a high ability to detect
anomalies (Recall) and avoid incorrectly labeling normal instances as anomalies (Specificity).

According to studies [10]-[13], the use of a combined set of metrics provides the most
comprehensive evaluation of the effectiveness of machine learning methods in anomaly detection
tasks.

where p, =

is the empirical probability of agreement;
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The developed methodology for assessing the effectiveness of machine learning methods in
anomaly detection within the radio frequency spectrum involves the integrated use of the 12 metrics
described above.

Selection/Formation of Datasets. The experimental evaluation of machine learning methods
for anomaly detection in the radio frequency spectrum is conducted using two datasets. The
generation of synthetic data is performed during the preparatory phase.

Due to the need for an initial evaluation of the methods on relatively simple material, a synthetic
two-dimensional dataset was created with clearly separated normal and anomalous samples (Fig. 2).
Specifically, the normal data were generated according toa N(0,1) distribution, while the anomalous

data were generated according to a N(5,1) distribution. This choice of parameters ensures a
noticeable shift between the centers of the two groups, simplifying the problem setup.

Visualization of the Two-Dimensional Synthetic Dataset
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Figure 2 — Visualization of the Two-Dimensional Synthetic Dataset

In addition to the dimensionality of the space, which in this case is d = 2, the sample size also
significantly affects robustness. To achieve sufficient statistical coverage, 10,000 normal examples
and 500 anomalous examples were generated, clearly demonstrating the algorithms' ability to handle
both the dominant class and the relatively rare cases.

To evaluate the performance of the algorithms under conditions closer to real-world
applications, a complex dataset was generated consisting of 10 radio signal parameters: frequency,
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amplitude, phase, modulation index, signal-to-noise ratio (SNR), bandwidth, symbol rate, power,
noise variance, and carrier frequency offset (Fig. 3).

Visualization of the Multidimensional Radio Signal Dataset
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Figure 3 — Visualization of the Multidimensional Radio Signal Dataset

Normal signals were created based on distributions centered around “typical” values (e.g.,
~ 2400 MHz for frequency, ~ 25 dB for SNR), whereas anomalous signals exhibited shifts in these
characteristics (e.g., increased frequency and amplitude, decreased SNR, etc.).

Hierarchical decomposition of the task of selecting the optimal ML method. From the
problem statement above regarding the evaluation of the effectiveness of machine learning methods
in anomaly detection within the radio frequency spectrum, it is evident that this is a multi-criteria
selection task over a space of alternatives. One of the well-known methods for solving such tasks is
the Analytic Hierarchy Process (AHP) [14]. We construct a hierarchical model. At the first level is
the goal of the study (evaluation of the effectiveness of ML methods). The second level of the
hierarchy consists of the evaluation metrics. The third level comprises the ML methods (Fig. 4).

Next, it is necessary to assign weights to the selection criteria (in this case, the metrics) and to
form the vector 2 [14].

O= w

Zwi _1 (12)

where w, is the relative weight of the i -th metric.
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Evaluation of the Effectiveness of Machine Learning Methods for Anomaly
Detection in the Radio Frequency Spectrum

Aceuracy Precision Fi FPR FNR Kﬂpp_a
i Coefficient
Balanced Recall Specificity AUC-ROC MCC Gomoan
Accuracy
Isolation Local Outlier One-Class
Forest Factor SVM Autoencoder GAN

Figure 4 — Hierarchical Decomposition of the ML Methods Selection Task

The vector €2 (12) is determined by experts who are involved in the interpretation of the
experimental study results.

Conclusions and prospects for further research. A methodology has been developed for
investigating the feasibility of applying machine learning methods to the task of anomaly detection
in the radio frequency spectrum. The preparatory phase of the methodology includes:

— the selection of five machine learning methods based on a review of the literature;

— the selection of evaluation metrics for assessing the effectiveness of ML methods (12
metrics);

— the hierarchical decomposition of the ML method selection task, based on the AHP, into a
three-level model.

Further research will involve conducting a computational experiment, followed by the analysis
and interpretation of its results.
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BAYECJIAB PABLIEB,
ITABJIO ITABJIEHKO

METO/IA MAIIIMHHOT'O HABUAHHSI ¥ 3AJTAYI BUSABJEHHSI AHOMAJIIHA Y

PAAIOYACTOTHOMY CHEKTPI: METOAUKA NJOCJIIIKEHHSA

JlocBiJT OCTaHHIX TPHOX POKIB IOBHOMACIITa0HOI BIMHM CBITYUTH MPO JUHAMIYHY

TpanchopMaIlito KOHIENTYadIbHUX 3acaj] O0HOBUX [l Ta 3MIHH MPIOPUTETHOCTI 3aC001B iX BEJCHHSI.

Tak, nmosBa Ta Bce OLIbII AKTHBHE 3aCTOCYBAaHHS PI3HOMAHITHMX OE3MUIOTHUX CHUCTEM, IIHPOKE

BUKOPHUCTAHHSI BUCOKOTOYHHUX 3aC001B Ypa)keHHS Ta HOBITHIX 3ac00iB paJloeieKTPOHHOI MPOTUIIT

BHU3HAUAIOTh CTPATEriyHUN XapaKTep paJioyacTOTHOTO CHEKTpy. 3abe3mneueHHs Oe3nepepBHOIO

CHEKTPAJIbHOTO MOHITOPUHTY Ta BHSBJICHHS aHOMaJbHOI aKTUBHOCTI B e(ipi CTa€ KPUTHYHO

BaYJIMBOIO CKJIQJIOBOIO CHUCTEM DPaJl0eNIEKTPOHHOI 0OpOTHOU, pajio- Ta pajioTEeXHIYHOI PO3BIJIKH,
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3aXHILIEHOTo 3B’513Ky. TpaauuiiHi miIX0Au J0 aHali3y CUTHAJIB, IO IPYHTYIOThCS Ha (DiIKCOBAaHMX
MOPOTOBUX 3HAYEHHSX, €BPUCTUYHHMX IMpaBHiaX ab0 ampiOpHUX CTATUCTHYHUX TPHUITYIICHHSX,
BUSIBIISIIOTH CBOIO HEIOCTATHIO €PEKTHBHICTh Y BUCOKOJUHAMIYHOMY Ta 3alIyMJICHOMY CEPEIOBHILI
Cy4yacHOro pajuioedipy.

VY 3B’s3Ky 3 IIUM BHHHKA€E MOoTpeda y JOCTiIKEHH] IHHOBAIIHHUX MiAXO0/IiB, 30KpeMa METO/IiB
MAIIMHHOTO HaBYaHHSA, Ha 3/aTHICTh 3a0€3MEYCHHS AaBTOMATUYHOTO BHUSBJICHHS AaHOMAJbHHX
curHayiiB 6e3 moTrpeOM y MapKoBaHUX MJaHUX. Taki pilIeHHS MAaloTh MiABUIIUTH TOYHICTS,
aJlanTHBHICTD Ta MIBUJIKICTh pearyBaHHs B CUCTEMaX CHEKTPAIbHOTO MOHITOPUHTY.

3amponoHOBAaHO METOAMKY JOCITIKEHHS JOUUIFHOCTI BUKOPUCTAHHS METOJIB MAIIMHHOTO
HaBYaHHS Yy 3aJa4i BUSBJICHHA aHOMATIH y paio4acTOTHOMY CIIEKTpPi 3 ypaxyBaHHSM CKJIaTHOCTI
CTPYKTYPU JaHUX, iX 0araTOBHMIpHOCTI Ta OOMEXKEHOCTI ampiopHoi iH(opmalii mpo aHoMaibHI
3pa3ku. Lst MeToauKa oCiiKeHHS BKIIOYA€E eTaIu:

— TIOCTAaHOBKH 33Jaui eKCIICPUMEHTY;

— B110OpY METO/I1B BUSBJICHHS aHOMAIil /Ui €KCTIEPUMEHTAILHOTO JIOCITIKEHHS;

— BHOOpPY METPUK OI[IHIOBAHHS;

— BuOOpPY / popMyBaHHIO HAOOPIB TECTOBUX JaHUX (IATACETIB);

— 0e3mocepeIHFOr0 MPOBEACHHS EKCIEPUMEHTAIBHOTO JOCIIKSHHS;

— aHaJIi3y Ta OLIHKM PE3yJbTaTiB;

— Bi3yasi3aiii Ta iHTeprpeTanii ogepKaHuX pe3yabTaTiB;

— (opMyBaHHS BUCHOBKIB 32 Pe3yJIbTaTaMH €KCIIEPUMEHTY.

JlaHa CTaTTs TPHUCBAYCHA TEOPETUYHIM CKIAJOBIH EKCIEPUMEHTAIBHOTO JIOCIIKEHHS.
[TpakTuyHi pe3yabTaTi OyayTh OMyOIiKOBaHI OKPEMO.

KuouoBi cjioBa: mTy4HUil 1HTENEKT, 3aJada BUSBJICHHS aHOMaJid, MallMHHE HaBYAHHS,
pamiouacToTHHI CreKTp, Kiacudikallis, MeTox aHamizy iepapxii, Isolation Forest, Autoencoder,
Local Outlier Factor (LOF), One-Class SVM, Generative Adversarial Networks (GAN).
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