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Abstract. The automatic e-Call system has become mandatory in the European Union since
2018. This requirement means that all new passenger vehicles released on the European market after
this date must be equipped with a digital emergency response service, which automatically notifies
emergency services in case of an accident through the Automatic Crash Notification (ACN) system.

Since the response of emergency services (police, ambulance, etc.) to such calls is extremely
expensive, the task arises of improving the accuracy of such reports by verifying the fact that the
accident actually occurred.

Nowadays, most car manufacturers determine an emergency by analyzing the information
coming from the built-in accelerometer sensors. As a result, quite often sudden braking, which avoids
an accident, is mistakenly identified as an emergency and leads to a false call to emergency services.

Some car manufacturers equip their high-end vehicles with an automatic collision notification,
which mainly monitors the airbag deployment in order to detect a severe collision, and call assistance
with the embedded cellular radios.

In order to reduce costs some third-party solutions offer the installation of boxes under the hood,
wind-screen boxes and/or OBDII dongles with an embedded acceleration sensor, a third-party sim-
card as well as a proprietary algorithm to detect bumps.

Nevertheless, relying on acceleration data may lead to false predictions: street bumps, holes
and bad street conditions trigger false positives, whereas collisions coming from the back while
standing still may be classified as normal acceleration. Also acceleration data is not suitable to
identify vehicle side impacts. In many cases emergency braking helps to avoid collision, while
acceleration data would be very similar to the data observed in case of an accident, resulting in a
conclusion that the crash actually occurred.

As a result, the average accuracy of those car crash detection algorithms nowadays does not
exceed 85%), which is acceptable, yet offers a lot of room for further improvement, since each
additional percept of accuracy would provide substantial cost savings. That is why the task of
increasing accuracy of collision detection stays urgent.

In this article, we will describe an innovative approach to the recognition of car accidents based
on the use of convolutional neural networks to classify soundtracks recorded inside the car when road
accidents occur, assuming that every crash produces a sound.

Recording of the soundtrack inside the car can be implemented both with the help of built-in
microphones as well as using the driver's smartphone, hands-free car kits, dash cameras, which would
drastically reduce cost of hardware required to solve this task.

Also, modern smartphones are equipped with accelerometers, which can serve as a trigger for
starting the analysis of the soundtrack using a neural network, which will save the computing
resources of the smartphone.

Accuracy of the crash detection can be further improved by using multiple sound sources.
Modern automobiles may be equipped with various devices capable of recording the audio inside the
car, namely: built-in microphone of the hands-free speaking system, mobile phones of the driver
and/or passengers, dash-cam recording devices, smart back-view mirrors etc.
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Introduction. World Health Organization (WHO) studies report that an average of 1.3 million
people die each year due to road accidents, with between 20 and 50 million injured [14]. Taking into
account that chances of survival directly depend on the timely medical assistance, it becomes critical
to enhance existing ACN systems in order to reduce time of emergency assistance.

The urgency of finding innovative approaches to solve the problem of detecting and classifying
car accidents is due to the economic expediency of increasing the accuracy of existing methods. Each
additional percentage of accuracy will save billions of dollars in direct costs for false calls to
emergency services.

In this paper, we will describe an innovative approach to improve the accident detection
accuracy using convolutional neural networks, and describe possible directions for further
improvement of our proposed approach. By automatically identifying anomalous traffic sounds,
namely car crashes and skids, our methodology helps to reduce false positives and missed alarms,
significantly improving the crash recognition accuracy.

The purpose of this paper is to analyze the existing mathematical apparatus of convolutional
neural networks, describe an innovative approach to solving the problem of recognizing and verifying
car accidents based on their use, as well as choosing the optimal architecture of a neural network to
effectively solve the problem using mobile devices as well as other sound sources, which may be
available inside the car during the crash.

In order to achieve this goal, it is necessary to study the sound properties of car accidents,
propose sound filtration methods capable to reduce irrelevant noises, conduct convolutional neural
network training on a selected crash samples, and evaluate the quality of the classification. In order
for neural network training to take place on a sufficient and representative training sample, it is
necessary to study methods of increasing the set of data used.

Analysis of the existing mathematical apparatus of the CNN

For the signal and image recognition, convolutional neural networks (CNN) are the most
popular and effective. They can be applied to any signal, be it data from sensors, audio signals,
images, etc [9].

This type of neural network is a multi-layer perceptron consisting of many levels of nodes,
hidden and source layers, and has a one-way flow of information. The activation function for the
nodes of the hidden layer is usually chosen a monotonic nonlinear S-shaped function, while for the
nodes of the original layer it is sufficient to use a linear function.

The Universal Approximation Theorem states that a feed-forward neural network with a single
hidden layer and a finite number of nodes can approximate any continuous function to any degree of
accuracy. When applied to the pattern recognition tasks, this type of neural network with a nonlinear
S-shaped function and several layers can recognize objects with high accuracy. These characteristics
of a direct propagation multilayer neural network lay the theoretical basis for the application of
multilayer perceptrons for the process of modeling and diagnosing pattern recognition errors. Errors
are determined in two ways: programming a pattern recognition correction process model or selecting
a pattern classifier [1].

The quality of image recognition by neural networks depends on the effectiveness of the
training conducted on the example of a certain sample of data using a significant number of training
pairs (input-output). According to the results of neural network training, the error or deviation
function (loss function) is determined. The neural network training process is aimed at minimizing
errors, which allows artificial intelligence to independently adjust the indicators of the permissible
weights of connections between neurons.

Typical architecture of the convolutional neural network is shown in Fig.1. The key feature and
difference between a CNN and a standard perceptron is that layer neurons do not have individual
weights, but use divided weights: small weight matrices, also called convolution nuclei. Thus, a
convolutional network has a significantly smaller number of parameters compared to a fully
connected network, which is followed by its higher performance and economy in the use of memory.
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Figure 1 — Structure of a convolutional neural network (CNN)

The convolutional network has a multi-layered structure. Hidden layers usually consist of
convolutional, aggregate, fully connected layers and normalization layers. After the input layer, the
signal passes through several layers of convolution where a sequential alternation of convolution and
pooling is performed on each layer. The alternation of layers allows you to create “sign maps” from
which, on each of the subsequent layers, the map will decrease in size, but the number of channels
will increase. In practical application, this will mean the ability to recognize complex subordinate
features.

After the convolutional layers, a fully-connected perceptron is additionally added, at the input
of which the final sign maps will be submitted. The first two types of layers, convolutional and sub-
discretized, alternate with each other, form the feature input vector for the multilayer perceptron.

Fully connected direct propagation neural networks can be used for both feature learning and
data classification, but applying this architecture to images is impractical. For example, a fully linked

layer for a small 100" 100 jmage has 10.000 weights. The collapse operation solves this problem
because it reduces the number of free parameters, allowing the network to be deeper with fewer

parameters. For example, regardless of image size, 3" 3 size areas, each with the same common
weights, require only 9 free parameters. Thus, it solves the problem of disappearing or “exploding”
gradients in training traditional multilayer neural networks with many layers using back-propagation.

Using the “sliding window” procedure, which segments incoming audio tracks into frames that
overlap on the joints, allows to process audio tracks of any length.

A loss function is a function that characterizes losses in case of incorrect decision-making based
on observed data. That is, it is a method of assessing how well an algorithm models a given data set,
how well the algorithm works with a given set. The purpose of the loss function in a neural network
is to evaluate and update the weights of neurons in order to improve the evaluation in the next step.

The loss function F can be used with mean absolute error, mean square logarithmic error, hinge
loss, cross entropy, softmax, and cosine.

Assuming that y"*' — predicted class, y"*

then loss functions can be calculated as follows:
— Average absolute error — the sum of absolute differences between target values and
predicted variables:
n
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n

— Mean-square error — the sum of the squares of the distances between the target values and
the predicted variables:
2
) zi”:l( yitrue _ yipred )

F =] ytrue _ ypred [E — -

— actual class, N — number of samples for training,

true _ , pred

F = ytrue _ ypred qz

— Mean-square logarithmic error:
pred 2
Z:inzl |Og ( yitrue +1]
y_

o+l

F =

n

245



P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

— Hinge loss — loss function, which is used to maximize the separation classification and has
the following representation:

F=Y max(o, i y;eypre j ,
i=1 2

true

where y;"" takes the value O or 1.

—  Cross entropy:
F(P,Q) =—§ P(x)logQ(x),
where P(x) — distribution of correct answers;

Q(x) _ probability distribution of predictions of the model.
In case of binary classification, the cross-entropy function will be as follows:

1 n
Fy(Q)=-=2 wlog (p(y))+(1-¥)log ((1-p(.))).
In the case of categorical classification, this function will be as follows:
F= _iz yitruelOg ( p(yipred )) ’

where p — probability estimate.

— Softmax — normalized exponential losses that are calculated as the sum of the value of the
softmax activation function and the value of the cross-entropy loss function:
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This function is used to predict a single class from C of mutually exclusive classes.
— Cosine:

F(XY)=1-0y ( f (6),(p(y)) .
The cosinus similarity of two vectors x and y is based on the angle between these two vectors:

(x.y)

Gos (X, y) = COS(X < y) :m y

where (.) — product of vectors, 1.0}, — L* norm.
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The higher the value of the cosine similarity, the higher the accuracy of the model. A completely
opposite vector has a cosine similarity value of -1, a fully orthogonal vector has a cosine similarity
value of 0, and completely identical vectors have a value of 1.

Modern architectures of convolutional neural networks

Nowadays, there are many architectures of convolutional neural networks [9]. The most popular
can be called the following:

— LeNet-5. The first successful application of a convolutional neural network was developed
by Jan Lekun in the 1990s. The LeNet architecture was used to recognize handwriting, postal codes,
numbers, etc.

— AlexNet. Created for image recognition purposes by Alex Kryzhevsky, Ilya Suckever and
Jeff Hinton. The AlexNet architecture was introduced at the ImageNet ILSVRC Challenge in 2012
and bypassed all the work of competitors (16% of errors versus 26% of the architecture that took
second place).

—  ZFNet. But the winner of ILSVRC 2013 was the convolutional neural network of Matthew
Zeller and Rob Fergus, which is known as ZFNet (short for Zeiler and Fergus). This architecture was
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an improved version of AlexNex: here they increased the size of the middle convolutional layers and
reduced the pitch and size of the filter on the first layer.

— GoogLeNet. In 2014, the above-mentioned competition was won by the CNN developed
by Sheged and other employees of Google Corporation. The main merit of this architecture is the
development and implementation of the input module (Inception Module), which allowed to
dramatically reduce the number of parameters to 4 million from 60 million. The reduction of
parameters also occurs due to the replacement of fully connected layers in the upper part of the
network with medium pooling layers.

— VGGNet. A neural network for extracting image features. It is specially designed for color

images with an input form of 224" 224" 3 \where 3 represents RGB color channels. The model
achieves an accuracy of 92.7% when tested on ImageNet dataset and tasked with object recognition
task (about 1000 classes) from the image / picture. This architecture was created by Karen Simonyan
and Andrew Zisserman and won at ILSVRC 2014. The developers were able to clearly demonstrate
that depth is a key factor for productivity. Their network contains of 16 convolutional and fully

connected layers and has an extremely homogeneous architecture that performs 3" 3 convolution

and 2° 2 pooling from start to finish. The original model is available in Plug and Play mode in the
Caffe deep-learning framework. The disadvantage of VGGNet is that you need to evaluate and use
much more memory and parameters (140M). Most of these parameters are in the first fully linked
layer, and since then it has been discovered that these FC layers can be removed without reducing
performance, significantly reducing the number of parameters required.

— ResNet. The Residual Network, developed by Kiming He and others, was the winner of the
ILSVRC 2015. Key features are the intensive use of batch normalization and special skip connections.
There are no fully connected layers at the end of the architecture. ResNet as of today is a real work
of art in the world of convolutional neural networks and is used most often.

Applying CNNs to classification of car accident soundtracks

In general, our idea of using neural networks to solve the problem of classifying the sounds of
car accidents is as follows:

— using the smartphone and/or other devices and embedded microphones, constantly record
the soundtracks of sounds in the car in a cyclical mode. Only the last 10 seconds are constantly
recorded, which in case of an accident is sufficient for analysis;

— in case of extreme acceleration detected by accelerometers built into the smartphone/car,
the 10 seconds of the recorded audio track is analyzed by the convolutional neural network in order
to classify the event as crash, background noise, or tire skidding;

— the audio-track is divided into segments which are analyzed by neural network, trained on
relevant samples of other car accidents.

In order to significantly reduce the processor load, the operation of a neural network can be
limited to cases where an emergency is pre-identified using algorithms based on accelerometer data
and gyroscopes installed in a car or mobile phone, used as a source of signals. In this case, the results
of the preliminary analysis will serve as a trigger for starting the work of the CNN. Similar approach
was outlined in the paper by Paciorek M., Klusek A., Wawryka P. Effective “Car Collision Detection
with Mobile Phone Only” [6].

In order for the accuracy of crash detection to be higher than algorithms based on information
from accelerometers, it is necessary to completely replace the analysis of data from accelerometers
with continuous analysis of the audio track using CNN in real time, using data from accelerometers
and gyroscopes as additional information, not as a trigger. Although this will lead to a constant load
on the processor of the car, and in case of using a smartphone, it can lead to a rapid discharge of the
battery, hence smartphone should be connected to charger.

We have chosen the ResNet architecture in order to process audio signals quickly, learn directly
from the audio signal, and result in discriminatory representation which achieves good classification
performance on different sounds of car crashes.

Since the length of the input samples provided to CNN must be fixed, we limit the duration of
audio tracks to 10 seconds. Also, different microphones of mobile or stationary devices can have
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different sensitivity, hence the amplitude of sound-tracks fed to the input of the neural network can
be significantly different in the same emergency situations. In further research, we plan to investigate
the effect of the amplitude of the sound signal on the ability of the CNN to correctly classify it, as
well as propose an approach to normalizing the amplitude of the input data, which will increase the
accuracy of the CNN classification.

One way to overcome the restriction imposed by the input CNN layer is to split the audio signal
into several fixed-length frames using a sliding window of the appropriate width. The width of the
window depends mainly on the frequency of the signal sampling. In addition, consecutive audio
frames can also have a certain percentage of overlap. This naturally increases the number of samples,
as some parts of the audio signal are reused. The process of segmenting the audio signal into the
corresponding frames is illustrated in Fig.2:
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Figure 2 — Segmenting the input audio signal into frames with 50% overlapping

In addition, the sampling rate of audio signals has a direct impact on the dimension of the input
sample and, ultimately, on the computational cost of the model. For car accident sounds, the sampling
rate of 32 kHz can be considered a good compromise between the quality of the input sample and the
computational cost of the model.

In the case where the input audio-form of the signal X is divided into S frames denoted as

Xin KoK X , during the classification we need to aggregate the forecasts of the CNN to come to a

decision on X . To do this, various merger rules can be used to achieve the final decision, such as the
majority of votes or the sum rule:

S 1s
Yi = J_Z::laji' or Yy, —gélaji’
1K,S

where a; — CNN prediction for 1= segment of audio-track X ;

i=1K,K _ predicted class;

S _ number of frames;
K" — number of classes.
When there are K classes, we generate K values and then select a class with the maximum

K
value for the corresponding audio input y, = max .

The pre-processing of the data involves both the source audio signals and their graphical
representation. It mainly aims to prepare the data for its use by the proposed deep learning method
by i) preserving some valuable features such as signal strength and ii) reducing the size and range of
values to speed up the processing.

For each incoming soundtrack we apply an audio normalization step, scaling the audio signal
to bring the highest amplitude peak (in absolute value) to the maximum possible. Next, in order to
feed the neural network with fixed-size inputs, we sequentially extracted 3-second-long audio frames
by means of a sliding window, with a 1-second shift between, so that each frame shares two-thirds of
the information with the previous one, in order to prevent the event from being cut off at significant
points and to ease detection of events that may occur at the extremes of the frames.
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The resulting frames are used to generate the visual representation of the audio, i.e., its
spectrogram. It represents the signal spectrum as a function of frequency and time, obtained by
applying the Short-Time Fourier Transform (STFT):

2in

X [k,m]= Z(h\‘/\;l[n]x[n FmH]e V),

where k is the frequency index, m the frame index, N the frame size, H the hop size, the m-th
frame of the source signal and w[n] - the window function.

In short, we first divided the signal into segments; then, we applied the Fast Fourier Transform
to them. As a result of this conversion, each audio frame goes from being a one-dimensional vector
to a 2D matrix in order to apply image processing techniques. On the practical side, the extraction of
spectrograms from the dataset sources involved the use of the matplotlib library with default values
including a Hanning window with NFFT of 256 samples and overlap of 128 samples, applied on 3-
second frames sampled at 32 kHz (96.000 samples per frame). Resulting spectrograms were resized
to a dimension of 50° 300 pixels to speed up the following pre-processing steps and reduce the
number of parameters required by the neural network. In the succeeding steps, we normalized the

pixel intensity values in the range [0,1] and standardized. We applied both operations in feature-wise

mode and computed the parameters on the set of spectrograms that compose the dataset rather than
on the single ones, as would happen with a sample-wise approach. Indeed, preliminary empirical tests
reported a significant increase in false positives when adopting min-max sample-wise normalization.

As a final pre-processing step, we applied noise reduction to the spectrograms through a
Gaussian filter with a 3" 3 kernel size.

Given the selected length of the road accident audio signal of 10 seconds, we have built a
convolutional neural network consisting of five convolutional layers. Several convolutional layers
are used to capture the exact time structure of the signal and serve as filters that perform the task of
classifying emergency situations. This will also make it possible to get rid of the use of an additional
signal processing module, since such a neural network is powerful enough to “extract” relevant low-
and high-level information from incoming audio signals.

Since the amount of input for network training is limited, the use of deeper neural network
architectures is not appropriate, as it may lead to “overfitting” — a phenomenon in which the neural
network correctly recognizes the data on which the training took place, but incorrectly recognizes the
new data. Retraining occurs when the model begins to “remember" training data, instead of “learning”
generalization from the trend. As a result, the “retrained” model has poor predictive performance
because it reacts too strongly to secondary deviations in the training data. Our goal is to make it
possible to carry out reliable predictions on general data on which training was not carried out.

We will use the ReL.U activation function for all layers of the neural network, except for the
source layer, for which we apply the softmax activation function (normalized exponential function).
The softmax function is often used in the last layer of classifiers based on neural networks. Such
networks are usually trained using cross-entropy, which gives a nonlinear variant of polynomial
logistic regression at the output.

As a result, our CNN returns the final prediction in the form of probability values associated
with the three possible classes: background noise, car crash and tire skidding.

The summary of the process of car crash classification is illustrated in Fig.3.

To assess the precision of the model, we used a 10-fold cross-check. To assess the accuracy of
the model, we used such indicators as accuracy and loss. For the loss function, we chose cross entropy.
Accuracy is the percentage of correctly classified instances. For each class, loss is defined as the
minimal value of losses among all eras (iterations in the learning process) in the verification process.
Similarly, the accuracy for each class is calculated by obtaining the best value of classification
accuracy in each era.

In order to quantitatively validate the performance of the proposed method and adequately
compare it with the existing ones, we use the following metrics:

249



P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

— the True Positive Rate (TPR), i.e. the ratio of correctly identified positive events (TP, true
positives) over all the positive events (P): TRP=TR/P;

— the False Positive Rate (FPR), defined as the ratio of events classified as positive when
only background noise frames are present: FPR=FP/P;

— the Miss Rate (MR), computed as the number of undetected events (FN, false negatives)
over the total number of positive events (P): MR=FN/P;

— the Error Rate (ER), i.e. the number of misclassified events over the total number of
positive events: ER=(FNTS+FNCC)/P, where FNCC are the events classified as car crash when the

correct outcome was tire skidding and FNTS are the events classified as tire skidding when the correct
outcome was car crash.
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Figure 3 — Summary of the car crash classification process
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The accuracy of accident classification is somewhat increased if two neural networks are used
simultaneously, one of which uses one-dimensional (1D) and the other two-dimensional (2D,
spectrograms) representations of sound signals as an input data. In this case each audio recording of
the input sample is converted into a special image — a Mel spectrogram, which is its compact
informative visual representation [4]. After that, the calculations are carried out in parallel, using two
neural networks, 1D and 2D ones, and the resulting classification results are aggregated. This
approach does not give a significant increase in accuracy and doubles the computing resources
required. However, provided there is enough processing power, any additional percentage of accuracy
is worth the processing resources spent.

The proposed approach was evaluated based on a set of test data from 2000+ audio samples of
emergency situations. Experimental results demonstrate a classification accuracy of 90%+ is achieved
when recognizing the sounds of the car accidents. This is significantly better comparing with the
models using the data coming from vehicle's built-in accelerometers and gyroscopes [5], as well as
better than those models using a raw audio signal as the input and dataset UrbanSound8k [15] to
classify environmental sounds, and those using spectrograms and MIVIA Audio Road Events dataset
[13] to classify road sounds.

MIVIA dataset is structured to present each audio event across six signal-to-noise ratio levels (5
dB, 10 dB, 15 dB, 20 dB, 25 dB, and 30 dB), layered with diverse combinations of environmental
sounds to simulate different ambient settings.
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Such a dataset distinguishes between car crashes and tires skidding and consists of 57 audio
files 60 seconds long and sampled at 32 kHz, recorded with an Axis P8221Audio module and an Axis
T83 omnidirectional microphone for audio surveillance applications. These files contain 400 events,
of which 200 are labelled as car crash and 200 as tire skidding.

Further improvement of the accident detection accuracy

Taking into account that every additional percentage of the accident detection accuracy saves
lives and results in hefty cost savings, it makes sense to further improve our methodology.

Expanding the training dataset. In most cases the number of training samples of the educational
data set is limited and/or insufficient to properly train CNN network. One way to expand the dataset
is to create additional copies of audio-tracks by deforming existing ones. Another option would be
partnering with car manufacturing companies, which conduct car crash testing as a routine safety
measure and collect variety of data, including audio recordings.

Pre-processing and filtering the data. The filters trained in the intermediate convolutional
layers of the proposed CNN do not exhibit dominant frequencies and appear to be noisy. It makes
sense to filter out the noise sounds during pre-processing of the input soundtracks and at the same
time focus on relevant sounds in order to train the neural network properly.

Here are typical sounds inside the car, which should be treated as noise and potentially filtered
out during the pre-processing of the soundtracks:

— music playing from the built-in car infotainment system and / or radio;

— humans talking to each other or on the phone, though screams during the car crash are
relevant data;

— engine, air-conditioning, wipers, wind from open windows and / or sunroof.

Here are typical sounds which are highly relevant for analysis and should be captured/processed
on a priority:

— honk sounds in case drivers try to warn another party prior to the crash;

— yells or screams of the people inside the car during a crash;

— screech of tires, as vehicles attempt to stop or change direction;

— hit bang, glass shattering, deformation of metal and other materials generates additional
sounds, including creaking, bending, and crumpling noises;

— sound of the car rolling over in case the impact was severe and the car keeps moving after
the initial impact.

Multiple sounds sources. We can further improve the detection accuracy by using multiple
sound sources. As discussed above, modern automobiles may be equipped with various devices
capable of recording the audio inside the car, namely: built-in microphone of the hands-free speaking
system, mobile phones of the driver and/or passengers, dash-cam recording devices, smart back-view
mirrors etc.

Fig.4 depicts such potential sound sources: mobil device, dash camera, hands-free microphone
embedded in the car wheel.

Figure 4 — Aggregating multiple input audio signal sources

Soundtracks from all those sound sources can be analyzed simultaneously through multiple
neural networks processing signals in parallel, with results aggregated at the end through the merger
rules (majority of votes or the sum rule).

Our current model can only analyze independent acoustic features, which can be influenced by
multiple sound events, especially when they overlap, hence there might be issues with identification
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of complex and diverse polyphonic sound events, such as those found in driving environments. One
of the main reasons is the lack of prior knowledge about the multimodal information of sound events.

In the course of further research, we will establish whether those approaches can lead to better
performance in the classification of car accident sounds. Also we will investigate further how
proposed methods can be adjusted in order to leverage additional information provided by polyphonic
sound events recorded by multiple sound sources in the vehicle.

Conclusions

In this article we propose an innovative approach to car accident detection through the
accident’s soundtrack analysis by using convolutional neural networks.

During the study it was found that convolutional neural networks, designed specifically for
image recognition, can be successfully trained to classify the sounds of road accidents.

Summarizing, the main contributions of this work are:

— we experiment with different deep learning-based approaches to detect and classify road
hazard events, especially accidents, from audio signals, proposing the type of architecture that
performs best;

— we propose a CNN architecture that ensures high accuracy of accident classification by
aggregating the results of the analysis of original audio tracks as well as their spectrograms;

— we validate the effectiveness of our method by (i) demonstrating its ability to significantly
improve performance with respect to using a standard CNN architecture on the basic spectrogram
and (ii) comparing its results against the competitors, which are using public UrbanSound8k [15]
and/or MIVIA Audio Road Events [13] datasets.

The proposed end-to-end learning algorithm of the CNN studies the representation directly from
the audio signal as well as the soundtrack spectrograms. The proposed approach was evaluated based
on a data set of 2000+ audio samples of emergency situations. Experimental results showed that it
allows to exceed the accuracy of the classification of existing approaches, demonstrating 90%-+
reliability in car accidents classification. Such approach demonstrated better performance than
models using a raw audio signal as an input and dataset UrbanSound8k [15], models that use a
soundtrack spectrograms and MIVIA Audio Road Events [13] dataset, as well as approaches using the
data coming from the vehicle's built-in accelerometers [5].

The proposed CNN architecture has fewer parameters than most existing CNN architectures
used to classify sounds. In addition, the proposed approach does not require any signal processing
module to classify sound, which makes this model quite suitable for use in mobile sound recognition
applications, or in built-in car systems.

Further research will focus on establishing whether those approaches can lead to better
performance in the classification of the car accident sounds.
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JIMUTPO MOI'MJIEBNY,
POMAH XMUIb

THHOBAIIIMHI METOJU PO3MNI3HABAHHSI ABTOMOBLJIbHUX ABAPIH 3A
JOIIOMOI'OIO AHAJII3Y 3BYKOBHUX JOPI’KOK 3 BHUKOPUCTAHHAM
AJTOPUTMIB HEMPOHHUX MEPEXK

AHoOTanisgs. ABTOMAaTMYHAa CHCTEMa €JNEKTPOHHMX JI3BIHKIB CTaja OOOB'A3KOBOIO B
E€pornericekomy Corosi 3 2018 poky. Lls BUMora o3Hauae, 1mo BCl HOBl aCAXUPCHKI TPAHCTIOPTHI
3aco0M, BUITYIICHI Ha €BPONEUCHKUI PUHOK MICHA 1€l JaTH, MOBUHHI OyTH OCHaIleH1 11U POBOIO
ci1y>k0010 pearyBaHHsl Ha Ha/I3BUYaiiHI CUTYyallli, 5ka aBTOMaTHUYHO MOBIAOMIISIE CIIyKOU €KCTPEHOT
JIOTIOMOTH Y Pa3i aBapii uepe3 CUCTeMy aBTOMaTHYHOTO moBiomiieHHs mpo aBapii (ACN).
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OCKinbKH peakiisi eKCTPEHUX CIykO (TMOMiIii, MBUAKOI JOMOMOTH TOIIO) HA TaKi BUKIIUKH
HA/I3BUYANHO OpOra, BUHUKAE 3aBJAHHS IiJBUIIEHHS TOYHOCTI TaKMX 3BITIB IUIIXOM INEPEBIpKU
Toro (haxTy, 1o aBapis AIMCHO cTajacs.

Y nwam yac OUIBIIICTP BHPOOHHWKIB aBTOMOOUIIB BH3HAYAIOTh HAJA3BHYAHY CHUTYAIIIIO,
aHai3yrouu iHhopMaIlito, 110 HAAXOAUTh BiJ BOYJIOBaHHMX JAaTUMKIB akcenepoMerpa. B pesynbrati
JOCUTH YacTO PAITOBE TAIbMYBaHHS, SIKE TO3BOJISE YHUKHYTH aBapii, MOMUIKOBO i€HTU(DIKYETbCS
SIK Ha/I3BUYAliHA CUTYAIlisl 1 IPU3BOIUTH JI0 TIOMUJIKOBOTO BHKJIMKY B €KCTPEHI CITY>KOH.

Jlesski BUPOOHHMKH aBTOMOOUTIB OCHAIIYIOTh CBOi BHCOKOKJACHI TPAHCIOPTHI 3aco0H
ABTOMATUYHUM CIIOBIIICHHSM PO 31TKHEHHS, K€ B OCHOBHOMY BiJCTEKY€E PO3TOPTaHHS MOAYIIKU
Oe3neku, o0 BUSBHUTU CUJIbHE 3ITKHEHHS, 1 BHUKJIMKATH JOINOMOTY 3a JIOMOMOIOK BOYAOBaHUX
CTUTPHUKOBHX paJionpuiimMadiB.

1106 3MEHIIUTH BUTPATH, JIESKi CTOPOHHI PIilIEHHS IPOMOHYIOTh BCTAHOBJICHHS KOPOOOK ITiJT
KaroToM, BITpOBHX KOpoOok Ta / abo wmouie OBDIl 3 BOymoBaHMM IaT4MKOM MPUCKOPEHHS,
CTOPOHHBOIO CIM-KapToI0, a TAKOK (hipMOBHUM aJrOPUTMOM JIJIsl BUSIBJICHHS yAapiB.

Tum He MeHII1, oropa Ha JjaH1 PO MPUCKOPEHHS MOKE PU3BECTH J10 TOMUJIKOBUX MTPOTHO31B:
BYJIMYHI yJapH, IIPKU Ta MOraHi ByJIWYHI YMOBU BUKIMKAIOTh IIOMUJIKOBI CIPallbOBYBaHHS, TOAL SIK
3ITKHEHHS, [0 HAaAXOISATh 3331y IMiJ Yac CTOSHHS Ha MicCIi, MOXYTh OyTH KiacuikoBaHi sK
HOpMaJIbHE TIPUCKOpPEeHHs. TakoX NaHi Mpo MPHUCKOPEHHS HE MiJXOAATh JJIS BUSBICHHS OIYHHMX
yAapiB TPAHCIIOPTHOTO 3ac00y. Y 06ararboX BUIAJIKaX €KCTPEHE TalbMyBaHHs JOIIOMAra€ YHUKHYTH
31ITKHEHHSI, TOJIl SIK JaH1 PO MPUCKOPEHHsI Oy yTh CXO03K1 Ha JaHi, 1110 CIIOCTEePIratoThCs y pasi aBapii,
10 IPU3BEJIe /10 BUCHOBKY, 1110 aBapis JiHCHO cTaiacs.

B pe3ynbTari cepeHs TOYHICTD IIUX aITOPUTMIB BUSBJICHHS aBTOMOOUTLHUX aBapiid CbOTOIHI
He mepesuirye 85%, 1m0 € NMPUAHATHUM, ajieé MPOIOHY€E 0araTo MOXKJIMBOCTI Ui MOJAIBIIOTO
BJIOCKOHAJICHHSI, OCKUJIbKH KOKHE JTOJIATKOBE CIIPUMHSTTA TOYHOCTI 3a0€3MeYUTh 3HAUHY €KOHOMIIO
komTiB. Och YOMY 3aBAaHHS MMiIBULIICHHS TOYHOCTI BUSBJICHHS 31TKHEHD 3JIMIIA€THCSA AKTYAIbHUM.

VY naHiif cTaTTi MM ONMIIEMO IHHOBALIWHUH MiIXi IO PO3Mi3HABAHHS aBTOMOOUTFHUX aBapii
Ha OCHOBI BUKOPHCTaHHS 3rOPTKOBUX HEHPOHHUX MEPeX s Kiacu(ikallii cayHTpeKiB, 3aMCaHuX
BCEPEMHI aBTOMOOLIIS, KOJU BiAOYBAaIOTHCS JOPOKHBO-TPAHCIIOPTHI MPUTOH, TPUITYCKAIOYH, 10
KO>KHa aBapisi BUJa€ 3ByK. 3alUC CayHATPEKY BCEPEAMHI aBTOMOOLISL MOXe OyTH peani30BaHui sK 3a
JIOTIOMOT010 BOYZIOBaHUX MIKpO(OHIB, Tak 1 3a JOMOMOror cMapTdOHa BOAiS, aBTOMOOITHLHUX
komIuiekTiB hands-free, Bizeokamep, 110 pi3KO 3HU3UTH BapTiCTh OOJAaTHAHHS, HEOOXIAHOTO IS
BUPIIIEHHS LIbOTO 3aBJIaHHS.

KpiMm Toro, cyuacHi cMapThOHH OCHAILIEH1 aKCeIePOMETPaMH, K1 MOXKYTh CIIy>KUTH TPUTEPOM
JUIS 3aITyCKY aHalli3y CayHITPEKY 3a JOIOMOT0r0 HEWPOHHOT MepexKi, sSIKa 3a0IaAUTh 00U CITIOBANIbHI
pecypcu cMapTdoHa.

Kiro4oBi cii0oBa: mTy4Hui iHTENEKT, 3ropTKOBI HEMPOHHI Mepexi, 00poOKa ay1iOCUTHAIIB.
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