P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

DOI 10.20535/2411-1031.2024.12.2.315737
UDC 519.816, 004.056

VITALIY TSYGANOK,
MYKYTA SAVCHENKO,
ROMAN TSYHANOK

A UNIVERSAL TRANSACTION DELEGATION METHOD FOR DECENTRALIZED
DECISION SUPPORT SYSTEMS

This study examines methods for decentralizing computation and storage to enhance the
security of end systems, focusing on decision support systems as a use case. Common limitations of
system decentralization are identified, and a new, universal transaction delegation method is proposed
to simplify decentralized system usage. An overview of available transaction delegation methods in
self-protected decentralized data platforms is provided, based on well-known projects using the
Ethereum platform. Four popular delegation methods in decentralized networks are distinguished,
with their advantages and disadvantages demonstrated through common solutions.

The research led to the implement of a universal transaction delegation method, independent of
the decentralized program’s signature standard. This method is realized as a web application on both
the server and client sides and can be applied to any decentralized program or existing system
supporting decentralized transaction delegation. The study also describes the architecture of a
decision support system using this method, applied specifically to the expert subsystem to ensure
decentralization and the integrity of expert input, making it impossible to tamper with once submitted.

Additionally, the economic model for the expert subsystem is reviewed, using real data. The
findings of this study enable the construction of secure decentralized applications on decentralized
data platforms, emphasizing usability and user-friendliness, and demonstrate an innovative
application within a decision support system for expert knowledge collection.

Keywords: decentralized data platforms, delegated transactions, decision support systems,
expert data, blockchain, Ethereum.

Introduction. Expert subsystems are a core component of decision support systems (DSS),
significantly shaping prediction models. Expert evaluations are generally deemed reliable if they
involve numerous experts or specialized expert groups [1]. To ensure unbiased input, various methods
are implemented, such as anonymizing expert input and minimizing high-influence authorities'
impact through distributed evaluations. However, guaranteeing data integrity in DSS often requires
complex traditional security systems.

With the emergence of Distributed Ledger Technology (DLT) and decentralized data platforms
(DDP), DSS can now leverage DDPs for secure, cost-effective data management compared to
traditional methods. Today’s DDPs, like blockchain, can operate on other synchronization
technologies, such as hashgraph [2]. DDPs are maintained by numerous computing nodes in a secure
network, making unauthorized access or tampering almost impossible. Key DDP properties include
bandwidth, scalability, decentralization, and maintenance cost [3].

Modern DDPs like Ethereum, EOS, IOTA, Hedera Hashgraph, and Bitcoin serve various
applications, from programmable cryptocurrencies and public registries to tokenization of assets [3].
Despite some incidents linked to third-party vulnerabilities, the decentralized platforms themselves
have proven resilient. DDPs enable secure classic system upgrades, enhancing data protection and
availability.

© V. Tsyganok, M. Savchenko, R. Tsyhanok, 2024
184

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

While DDPs offer benefits, they lack scalability and are often complex or costly for end users.
Current DDPs cannot handle high-volume internet traffic, limiting their applications. Simplifying
DDP-based applications is a crucial task, as user interaction with these systems remains challenging.
This paper presents using of a universal approach [4] to designing DDP applications that enhance
expert input security, mitigating tampering risks and fostering DSS trustworthiness.

1. The problem of multi-currency fees in decentralized data platforms

All DDPs require ongoing support from network participants motivated by incentives [4].
Common incentive schemes include:

- Financial rewards: In DDPs like Bitcoin and Ethereum, participants earn platform-specific
assets as rewards, which also cover transaction fees. Specific reward models differ; some platforms
inflate assets (e.g., 1% yearly) and distribute rewards among top participants.

- Networking privileges: IOTA, for example, requires users to validate others' transactions,
allowing them to perform more transactions themselves.

— Volunteer or institutional support: Some public networks rely on volunteers or institutions,
as seen with the Libra project, where organizations like Visa and PayPal contribute to network
maintenance.

Most DDPs rely on financial rewards for network upkeep, with users paying fees in platform-
specific cryptocurrencies [3]. This fee structure serves as a spam-prevention measure but complicates
DDP access since users must purchase cryptocurrency and set up a wallet to start using DDP-based
applications. This process limits user engagement, as illustrated in Figure 1.1.

Create Get some ;
. Service
———| Blockchain | crypto on » .
Wallet Exchange
Users

Figure 1.1 — User steps before using a decentralized application

Many users avoid DDP services due to complex onboarding, limiting adoption to those familiar
with cryptocurrency. This complexity results in DDP-based applications either having limited user
bases or simplifying functionalities, which undermines DDP advantages.

2. Approaches to simplifying decentralized data platform adoption

Decentralized applications (DApps) [3] require special software known as crypto wallets.
Wallets, which may be standalone devices [5] or software [6], store users' private keys and help
execute transactions within DDPs. Creating a wallet involves generating a key pair, with the private
key stored securely offline [7]. Wallets may use algorithms like BIP32 [8] for generating multiple
accounts from a single key, as shown in Figure 2.1.

A

Users
Figure 2.1 — Steps required before using a DApp without cryptocurrency purchase

Create
Blockchain
Wallet

To simplify user access, DDPs often employ transaction delegation. Here, a “delegate” handles
the transactions, covering fees so the user avoids purchasing cryptocurrency [9], [10]. Below are the
main transaction delegation methods.

185

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

Approval jmmmmmm————— \
Transaction Token Calls E Other i
> | contract [~~~ ! Contracts !

: H

Account - e

Further
g % Transactions

Operator
(Delegate)

Figure 2.2 — Trusted transaction delegation approach scheme

2.1. Trusted transaction delegation. Trusted transaction delegation enables users to authorize
another account to act on their behalf, as defined by standards like ERC777 in Ethereum [11]. This
approach eases DApp use since the delegate manages transactions and fees. However, initial
authorization still requires paying fees in platform-specific cryptocurrency. The scheme of a trusted
delegated transaction approach is shown in Figure 2.2.

This delegation method benefits simplicity and standardization but may expose users to security
risks due to the delegate’s extensive permissions.

2.2. Transaction delegation with decentralized auxiliary identity programs. A more secure
method employs auxiliary decentralized programs or identity contracts to delegate transactions. Users
authorize transactions via signatures without paying fees, as shown in Figure 2.3. This method adds
security by restricting the delegate’s capabilities to signed actions.

Signature "lgentity" Cals | Token
|—> roxy >
Contract ' Contract

Nt TX Y—g—— | em===-----
Account v "
Transaction
I
o Other
| contracts
Delegate

Figure 2.3 — Transaction delegation using auxiliary decentralized programs

While this method enhances security, it may be incompatible with certain DApps and requires
an initial network fee for identity contract setup, which could expose DApps to spam attacks.

2.3. Transaction delegation without decentralized auxiliary identity programs

This method combines elements of both previous approaches. Users retain control over
transactions through digital signatures without needing auxiliary programs. The method, illustrated
in Figure 2.4, offers full control and is compatible with various DApps.

CoTTTTTETS (]
Signature Token Calls i Other E
Contract [~~~ i Contracts !
1 1
Account | & T
Transaction
Delegate

Figure 2.4 — Transaction delegation without auxiliary programs

Its advantages include reduced initialization requirements and compatibility with existing
DApps. However, lack of standardization remains a limitation.

2.4. Transaction delegation at the decentralized data platform level. Implementing
transaction delegation directly at the DDP level, as potentially planned for Ethereum 2.0 [12], could

186

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

streamline the delegation process. This method would allow delegates to cover transaction fees across
multiple transactions without centralizing the DDP, as shown in Figure 2.5.

While this approach would encompass all previous delegation benefits, it faces challenges in
standardization and adoption across platforms.

3. The universal method of transaction delegation

All the above transaction delegation methods have their pros and cons, with none standing out
as the best. To assess which approach may be the most suitable for further development, a review of
popular decentralized applications (DApps) on Ethereum that successfully completed an ICO was
conducted, including projects such as Binance, DreamTeam, Loom Network, Stratis, Maker DAO,
OmiseGo, Basic Attention Token, 0x, and Golem. Key trends were identified:

— Most DApps use their own token on top of the decentralized data platform (DDP) to pay
for their services [13].

-~ DApps are generally limited to an experienced cryptocurrency audience, who often avoid
delegated transactions and instead pay with the DDP currency alongside the service token [14].

g % Signature %
—>

1

1

Account's TX Any i
| contracts |!

Delegate' H

1

1

1

i

1

1

1

i

i

Account Delegate ! Fee

! Payment -e---eaa-- !
L b Ay
! ! Contracts ! !
1 []
1 1
'

Signed transaction group
Figure 2.5 — Transaction delegation scheme at the DDP level

- Private DApps that use transaction delegation create specialized, non-interoperable
systems that work only with their own tokens.

- Transaction delegation tends to be centralized, lacking an open ecosystem (market) for
delegated transactions. DApp developers generally manage delegated accounts without financial
interest for other organizations.

— There is no common standard for building DApps with transaction delegation.

In summary, most DApps build their own delegation ecosystems, embedding delegated
functions within the decentralized token program. However, the absence of a unified approach or
standard remains a problem.

The universal method of transaction delegation proposed here aims to standardize DApp
development without requiring a single standard at the DDP level. This approach allows a single
backend service system for any DApp with transaction delegation, supporting both new and existing
programs.

This method provides a reference for token development, supporting multiple implementations
and ensuring security for DApp users. The universal method involves three main components:

-~ Aflexible approach to building decentralized programs, allowing developers to choose any
transaction delegation standard.

- A backend service component compatible with any DApp and transaction delegation
approach.

- Avuniversal, embeddable client-side Ul as a web widget, highly configurable for executing
delegated transactions.

3.1. The approach to decentralized program creation. This universal transaction delegation
method operates at the DDP level, embedding delegated functions within the token program rather
than relying on an intermediate (identity) contract. Delegated functions are integrated directly into
the decentralized token program, which also handles transaction fees. Figure 3.1 shows user
interaction with the DApp without intermediate contracts.

187

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

[Recipient address] ! decentralized
data + data o ’: N

i H ‘
1 1 N
1 | H
1 | H
i ' ! .
Signature | signature t+ signature : 1 programs
! [Transfer amount] — ! b e '
i i i Data and
1 1 1
1 1 1
1 1 1
1 1 1
1 1]
' 1

1
1
.| Decentralized token ; i
Account [Additional parameters] Delegate > pragram j signature i
validation :
________________________ e T e
Graphical user interface Decentralized data platform

Figure 3.1 — the user interaction with the decentralized program without intermediate
(identity) decentralized programs

In this approach, a delegated transaction is executed as follows:

1. The user enters data or receives pre-prepared data in the graphical Ul.

2. The user signs the data and additional transaction-specific parameters (such as commission,
deadline, and transaction ID).

3. The user sends the signed data to the delegate.

4. The delegate sends the transaction to the DDP, paying the commission.

5. The token program verifies the signature and data, then executes the transaction if valid.

A decentralized token program can be built using any standard, such as ERC20 or ERC721 [15].
However, to use this universal method effectively, the program must meet the following criteria:

— Every normal function of the decentralized program should have a "delegated” counterpart,
which performs the same action without depending on the calling account. Instead, it relies on a
digital signature to identify the account. For example, if a token program includes a transfer function,
a transferViaSignature function should be added, allowing transactions to be executed by a delegate.
Alternatively, a single delegate function could handle all other functions via electronic signatures.

— I possible, the delegated function should support multiple signature standards to ensure
compatibility and resilience.

- The delegated function should accept additional parameters to enhance security and limit
misuse. Recommended parameters include transaction 1D, deadline, and a fee recipient account. All
parameters should be signed and verified by the token program.

- A proxy-call function may also be implemented, along with a corresponding delegated
function, often called approveAndCall. This allows other DApps to interact with tokens in a single
transaction.

The following describes the recommended approach to implementing delegated functions in a
decentralized Ethereum data platform, specifically for an ERC20 token and its transfer function. This
approach simplifies the DApp by removing the need for a separate currency for transaction fees. The
method can be applied to any DDP unless the platform offers another transaction delegation option.

The ERC20 transfer function is designed to move tokens from one account to another. In this
model, a transferViaSignature function is added to perform the same operation through delegation,
allowing any account to initiate a transfer on behalf of the account that signed the transaction.
Figure 3.2 demonstrates the process and outcomes of the transfer and transferViaSignature functions.
Notably, transferViaSignature can include an optional commission to offset the delegate’s expenses.

transfer function (direct call transferViaSignature function (delegated call

Data Data
Direct call [pecentralized token + signature + signature| pelentralized token
= program = program
Account Account Delegate
.—v._ & - &
& — : Recipient & I Recipient
- ')
B - 4
Account A (C)\ Account [l - & _— &

Miner

Delegate Miner

Figure 3.2 — the scheme of calls to transfer and transferViaSignature functions and function results

188

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

In a delegated transaction, the account covers transaction fees with the token itself, while the
delegate pays the DDP's commission. The delegate can exchange tokens to cover their expenses in
the background, eliminating the need for the user to hold multiple currencies (e.g., Ether on
Ethereum). Commissions may be omitted, but in this model, a balanced economic structure rewards
the delegate for facilitating the transaction. The transferViaSignature function includes the same
parameters as the transfer function, along with additional ones for enhanced security.

Figure 3.3 illustrates the recommended parameters:

— from — the sender’s account (optional), distinct from the calling account and can be
retrieved from the digital signature.

- fee — the commission amount the sender pays to the feeRecipient.

contract ERC20 {
function transfer(to, value) external;
function transferviaSignature(from, to, value, fee, feeRecipient, deadline, sigld, sig, sigStd) external;

}
Figure 3.3 — recommended parameters of the functions of a decentralized token program

- feeRecipient — the account receiving the commission; should not default to the calling
account to avoid race conditions.

- deadline — the delegated transaction execution limit, allowing users to control transaction
validity and re-sign if necessary.

- sigld — a unique identifier for the transaction, verified for uniqueness to prevent repeated
execution.

- sig —the digital signature of all parameters, certifying the action.

- sigStd — a signature standard identifier for interoperability across standards.

These additional parameters restrict the delegate’s ability to manipulate the transaction,
ensuring that only the defined transaction is executed as intended.

The universal method introduces a degree of centralization since only specific entities can offer
delegation services. However, this limited centralization is solely to simplify the DApp for users. To
maintain decentralization, developers are encouraged to write delegated functions as supplementary
features, keeping the original functions available for direct user transactions.

3.2. The approach to transaction delegation support service creation. Developing a
decentralized program for delegated transactions requires creating an automated server-side
workflow for conducting transactions on a decentralized data platform. The support service should
handle the following functions:

- Supporting real-time delegated transactions, ensuring that the transaction is sent to the
network and stored (mined).

- Collecting data required for delegated transactions.

- Calculating the reasonable transaction fee based on network load and asset exchange rates.

- Validating and verifying user data.

- Allowing users to track delegated transactions.

The task was to develop an auxiliary server system that would support these functions,
compatible with any decentralized system, including those supporting transaction delegations. This
technical challenge involves anticipating:

— Protection against various attacks, such as spam, duplication of transactions, and
unauthorized access.

- Sequential execution of delegated transactions, even when requests can be parallel (for
some platforms).

- Management of transaction parameters, ensuring profitable transaction fees.

— Serving multiple user requests simultaneously.

- Ensuring system versatility for any decentralized platform supporting transaction
delegation.

189

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

For example, in the Ethereum decentralized data platform, the interaction of system components
is illustrated in Figure 3.4.

User Delegate

Ethereum
Network

Delegated

Transaction
@ Request

Transaction

Transaction| Publishing Background ______________
i fees and Auxiliary cryptocurrencyi i
h_lenlt data to sign automated swap ' Exch !
(graphical user deldgatente It --- - i Exchange |
]]

1

interface) service

Data signing @ |

@Transaction signing

Delegate
account
maintained by
service

@ Platform-specific
cryptocurrency

Figure 3.4 — Interaction between the delegation system components and the auxiliary server part

The auxiliary system includes five key components:

- A(client interface): The graphical interface for user interaction.

-~ B (automated server): The delegation server, which clients choose based on the best
transaction rate.

— C (delegate account): Stores the private key and signs transactions.

— D (decentralized network): Supported by the platform (e.g., Ethereum).

- E (exchange module): Handles automatic cryptocurrency exchange to pay fees in platform-
specific cryptocurrency.

The system may not include the exchange module in some configurations, particularly in private
systems where users are not charged transaction fees. Public transaction delegation requires a fee,
which the delegate may adjust for profit. Fees are converted into platform-specific cryptocurrency to
cover transaction costs.

3.3. User's interaction with the delegation system. The user interaction with the system and
the interaction between the system components is illustrated in Figure 3.5.

The automated steps for user interaction are as follows:

1. Delegated transaction request: The client prepares the transaction parameters and requests
approval from the Transaction Delegation Support Service.

2. Delegate's response: Using REST API, the delegate informs the client about:

— Feasibility of the transaction.

- The fee in the user’s token (calculated using an algorithm).

- Signature data for the user, offering options for different signature standards.

- Additional details, such as transaction 1D and estimated time.

3. User signature and transaction confirmation: The client selects the signature method, signs
the data, and sends it to the delegate for execution.

4. Transaction signature by delegate: The delegate signs the transaction and submits it to the
network, including user parameters, delegate-defined options, and user signature details.

5. Transaction submission to the decentralized network: Once validated, the transaction is
sent to the network. After mining, the delegate notifies the client of success or failure, and the client
checks the status.

190

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

6. Getting the result: The client continuously polls the delegate or checks the transaction
status independently in the decentralized network.

DELEGATED TX
CLIENT BACK END

Action (transfer) Request delegated transaction i
Back end uses some formula

\
\
\
.............. to calculate the fee in tokens & [
a) Request ID returns it along with other info
b) Calculated TX fee in tokens \
c¢) Account address which receives fee |
d) Additional metadata (expiration, etc)
e) Available signature standards :I Save Delegated TX request |
= data to sign |
~ \
\
l
\
\
\
\
\

.
Sign data The user signs data in their wallet
‘ (Metamask or mobile wallet).
Cmmmmmmm——— — — "50w5 0 e Signing data is free unlike making a
| Signature transaction in a network

- —
Validate the signature and the transaction

Request ID, Signature (confirmation) against the network state
Publish Transaction

Request ID, TX Hash TX Hash

—

| |
Figure 3.5 — Sequence of user interaction with the delegate and decentralized network

This method automates most interactions, with the user only needing to sign the transaction.
The signature ensures transaction integrity, preventing unauthorized changes by the delegate.

4. The model of decentralized decision support system

Decision Support Systems (DSSs) are used to generate recommendations based on facts and
expert input [16-18]. However, centralized storage of expert data poses risks of unauthorized access
and modification. A decentralized system mitigates these risks, ensuring reliable input data from
experts, which is crucial for DSS credibility.

4.1. Decentralization of the expert subsystem. The decentralized model is illustrated in
Figure 4.1, where expert data is stored in a decentralized registry, making it auditable and authentic.

e-| Audit
.

N Secure input Decision Support)
i /,i i system System Advice

Experts

Decentralized Knowledge
storage hase

Figure 4.1 — DSS model with a decentralized expert subsystem

The DSS cycle consists of these steps:

191

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

1. Setup phase: Experts obtain decentralized accounts (wallets), replacing traditional login
systems.

2. Funding phase: Experts fund their decentralized accounts to pay transaction fees.
Delegated transactions can eliminate this step.

3. Authorization and data input: Expert-submitted data is stored securely in the decentralized
registry, minimizing data volume to reduce costs.

4. Datasubmission and signature: Experts sign data and submit it to the decentralized network
for verification.

5. Data processing: The DSS processes the expert data for further use.

4.2. The use of delegated transactions in the expert subsystem. Delegated transactions
streamline expert interactions, as shown in Figure 4.2. In this model, experts do not manage
transaction fees directly. Instead, a system operator funds the decentralized account to cover
transaction costs, reducing the expert's financial burden. The system operator funds the account once,
for example, with $50, which covers multiple expert operations until the next top-up is needed.

8

Decentralized Den etlral ized
Identity ~ Sign Network

Data Input User
Interface

Decision Suppaort
System

A

-
-
il
]

Bl

Traditiona Decentralized Decentralized Traditiona
Server dentity SEervers Server
Figure 4.2 — Decentralized expert subsystem model using delegated transactions

By utilizing transaction delegation, experts can focus on their work without worrying about
transaction fees, making the system more efficient and user-friendly.

4.3. Ways to compactify the data. Unlike free data read operations, transaction fees are
incurred for every byte written or changed in a public decentralized registry (excluding test networks).
Thus, minimizing the data recorded in the decentralized registry is crucial.

In Ethereum, transaction costs are calculated based on the integer G (1), known as “gas”. It
represents the sum of the costs of all executed program instructions g, , each with a predefined value.

Some operations, such as deleting data, have a negative value, but the sum of these cannot exceed
half of the positive amount. Each transaction also has a base cost g, = 21000 added to G, and the
total cost is limited by the block sizeG,, = 10000000 (as of early 2020). The transaction cost is
thus:

G=g, +i§_l:gi [0 >0]—min{—iZi:gi[gi <0],(g0 +%“gi [0 >0]]+2},G <G, 1)

The final transaction cost in cryptocurrency X (Ether) is definedas E= G” P, where P is the
“gas price”, set by the transaction signer. While P could theoretically be zero, miners would have no
financial incentive to include such a transaction. Therefore, selecting the appropriate P for the
current network conditions is necessary.

The most "valuable" operations in Ethereum are those that save data to the decentralized
registry. Writing a new value (256 bits) costs g = 20000, and modifying an existing value costs

g = 5000. For more complex data structures, additional memory slots may be needed, which are
priced similarly [19].

192

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

To reduce the transaction cost, one can minimize G (by reducing the number of transactions
and increasing data deletion) and P (by performing transactions during low network load). Below,
we explore methods for compacting data and evaluate their impact on system costs in a real public
decentralized network.

Compacting expert records for a decentralized registry

Let’s assume that expert evaluations are stored in the most compact form in real-time. For
instance, the binary expert assessments a,, a,, K a, (obtained by pairwise comparisons) are written

as an array of bits b, b,, K b, where each bit corresponds to a binary evaluation of two objects by a
specific criterion. The number of pairwise comparisons is n=k” (k- 1), 2, where k is the number

of objects being compared [18].
The storage cost for 256 bits of information in the decentralized registry is G= g, + Qe -

where g .. = 20000 is the cost of writing 256 bits. Assuming that each expert session generates an
average of b, = 1" 10° bits of data, the cost function for storing data is:

f (b) = gO + [b - 256] X gsstore + [b _btx] x (go + gsstore) K) (2)

As shown in Figure 4.3, the relationship between the amount of data stored and the transaction

value is nearly linear, with some exceptions where data is split into multiple transactions due to
individual submissions.

300000
200000

100000

G, linearly proportional to $

0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

bits

Figure 4.3 — Relation between G and the number of bits of data stored in the decentralized registry

Overwriting outdated data
A more cost-effective approach is to overwrite outdated data rather than appending new data.
In Ethereum, overwriting 256 bits of pre-existing data costs g, = 5000, significantly reducing the

transaction price by up to 61.3% compared to recording new data.

However, this method imposes restrictions on retrieving outdated data. While decentralized
programs do not provide direct access to overwritten data, historical information can still be recovered
using transaction or block IDs, stored outside the registry. Blockchain technology allows recovery of
overwritten data through non-standard interfaces when needed.

Transactions grouping

Grouping multiple expert transactions is possible if the data does not need to be recorded in
real-time, allowing for delayed entries in the decentralized registry. Implementing this requires
additional modules and precautions to ensure the expert's data is included. One way to reduce costs
is by using delegated transactions, which allow the transaction to be submitted by an administrator.

Grouping transactions without delegated transactions can result in up to 16.54% cost savings,
reaching a total of 77.84%. However, there is a limit on the number of transactions that can be
grouped, as Ethereum has a block size limit of G = 10000000 . If grouped transactions exceed the

block size (e.g., 10.5 KB), they must be split into separate groups.

Impact of delegated transactions on the total cost of the system

Delegated transactions add a small additional cost to each transaction, but this becomes
significant when transactions are not grouped. Experimental results show that performing the minimal
data-recording transaction with the method described here adds approximately

193

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

Joextra ? Joexamin » 21000 in additional costs. However, the signature validation logic does not

significantly depend on the data size, making this additional cost negligible in calculations.

Figure 4.4 illustrates the relationship between G and the number of bits written to the
decentralized registry for all optimization methods:

-~ Real-time data recording (blue).
Overwriting outdated data (red).
Deferred transaction grouping (purple).
Grouping with delegated transactions (green).

- Grouping with delegated transactions in a more optimized system (yellow).

From Figure 4.4, it is clear that using delegated transactions can reduce system costs by over
50% when combined with transaction grouping. However, implementing delegated transactions
increases the minimal system cost by only 18.75% compared to the most optimized method without
delegation.

== |ndividual transactions == With data overwriting With data overwriting and grouping == |ndividual delegated transactions Delegated transactions grouped

1000000

750000

500000

250000

G, linearly proportional to $

—

0 2000 4000 6000 8000

0

Data bits

Figure 4.4 — Dependence of value G on the number of bits of recorded information for all methods
of data compactification

4.4. Estimating the real cost of system operation. The cost evaluation of the expert system’s
operation was conducted on the Ethereum network, using a system that compacted data by
overwriting outdated entries without grouping transactions. Over a three-month period, an average of
two delegated transactions were conducted daily, each modifying 768 bits in the decentralized
registry. Approximately 90% of these transactions simply overwrote existing data. The set gas price
P reflected the real-time network load, without attempting cost reductions through deferred
transactions.

The study confirms the transaction delegation system’s readiness for real-world deployment,
though some optimizations for cost reduction — such as transaction grouping and deferral to low-
traffic times — were not implemented in this phase.

Based on these results, we assessed cost savings achievable by:

1. Conducting transactions during low network load, which could reduce the average gas

price P,, = 1.01" 10°, yielding a 74% 74% cost savings;

Vg

2. Using data compactification with transaction grouping: 95 transactions could be
consolidated into two larger transactions, with an additional 74% reduction in costs. This value can
be calculated by substituting the aggregate values in formula (2) for 9, = 9yeyamn = 21000;

3. Combining both strategies would yield a maximum cost reduction of 92.2%.
Thus, the estimated minimal cost to write b= 71.25KB of data in two delegated transactions

would be approximately $0.40. This estimate depends on cryptocurrency price fluctuations and
network demand [20], and doesn’t include additional logic beyond basic data writing [21]. In some
cases, high network fees could delay transactions by months if budget constraints prevent timely
processing.

Conclusions. A universal transaction delegation method based on research into decentralized
data platforms and applications is presented. This method standardizes the backend and client side
without requiring standardization of the decentralized application itself, making it applicable to both

194

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

new and existing systems. Our optimizations applied to expert subsystems of decision support
systems can reduce typical operating costs by up to 92.2%.

The transaction delegation system developed here simplifies the user experience and eases
developer implementation efforts. Beyond decision support systems, the method has been applied to
real-world business applications, including projects like Decash and Hoprnet. During testing, a
project with nearly 2000 users demonstrated the system’s scalability and readiness for decentralized
applications on Ethereum.

Future uses of these solutions span secure decentralized applications with user-friendly
interfaces, especially for systems needing high security and data integrity, such as medical and
financial applications. This method provides a foundation for creating decentralized applications that
balance security with affordability, supporting the wider adoption of blockchain technology.

REFERENCES

[1] V.V.Tsyganok, S.V.Kadenko, and O.V. Andriichuk, “Significance of expert competence
consideration in group decision making using AHP”, International Journal of Production
Research., vol. 50, no. 17, pp. 4785-4792, 2012. doi: https://doi.org/10.1080/00207543.
2012.657967.

[2] D. Mookherjee, “Decentralization, hierarchies, and incentives: A mechanism design
perspective”, Journal of Economic Literature, vol. 44, no. 2, pp. 367-390, 2006. doi:
https://doi.org/10.1257/jel.44.2.367.

[3] S.Raval, Decentralized Applications: Harnessing Bitcoin's Blockchain Technology.
Cambridge, MA, USA: O'Reilly Media, Inc., 2016.

[4] N. Savchenko, V. Tsyganok, and O. Andriichuk, “A Cost-Effective Approach to Securing
Systems through Partial Decentralization”, Information & Security: An International Journal,
vol. 47, no. 1, pp. 109-121, 2020. doi: https://doi.org/10.11610/isij.4707.

[5] M. Arapinis, A. Gkaniatsou, D. Karakostas, and A. Kiayias, “A Formal Treatment of Hardware
Wallets”, in Financial Cryptography and Data Security. FC 2019, I. Goldberg, T. Moore, Eds.,
vol. 11598. Cham: Springer, 2019, pp. 426-445. doi: https://doi.org/10.1007/978-3-030-32101-
7_26.

[6] M. Pustisek, and A. Kos, “Approaches to front-end loT application development for the
Ethereum blockchain”, Procedia Computer Science, vol. 129, pp. 410-419, 2018. doi:
https://doi.org/10.1016/j.procs.2018.03.017.

[7] H. Rezaeighaleh, and C.C. Zou, “New Secure Approach to Backup Cryptocurrency Wallets”,
in Proc. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA,
2019, pp. 1-6. doi: https://doi.org/10.1109/GLOBECOM38437.2019.9014007.

[8] D. Khovratovich, and J. Law, “BIP32-Ed25519: Hierarchical Deterministic Keys over a Non-
linear Keyspace”, in Proc. 2017 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), April, 2017, pp. 27-31. [Online]. Available: https://input-output-
hk.github.io/adrestia/static/Ed25519 BIP.pdf. Accessed on: May 26, 2024.

[9] S.Cho, S.Y. Park, and S.R. Lee, “Blockchain consensus rule based dynamic blind voting for
non-dependency transaction”, International Journal of Grid and Distributed Computing, vol.
10, no. 12, pp.93-106, 2017. doi: https://doi.org/10.14257/ijgdc.2017.10.12.09.

[10] A. Quaddah, A.A. Elkalam, and A.A. Ouahman, “Towards a novel privacy-preserving access
control model based on blockchain technology in 1oT”, in Europe and MENA Cooperation
Advances in Information and Communication Technologies. New York, USA: Springer, 2017,
pp. 523-533. doi: https://doi.org/10.1007/978-3-319-46568-5 53.

[11] M. Mulders, “Comparing ERC20, ERC223, and the new Ethereum ERC777 token standard”.
[Online]. Available: https://www.cointelligence.com/content/comparison-erc20-erc223-new-
ethereum-erc777-token-standard. Accessed on: May 27, 2024.

195

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[1]

[2]

3]
[4]

[5]

S.J. Wels, “Guaranteed-TX: The exploration of a guaranteed cross-shard transaction execution
protocol for Ethereum 2.0”, Master's thesis, University of Twente, Enschede, Netherlands,
2019. [Online]. Available: https://purl.utwente.nl/essays/79884. Accessed on: May 27, 2024.
J.Y.Lee, “A decentralized token economy: How blockchain and cryptocurrency can
revolutionize business”, Business Horizons, vol. 62, no. 6, pp. 773-784, 2019. doi:
https://doi.org/10.1016/j.bushor.2019.08.003.

M. lansiti, and K.R. Lakhani, “The truth about blockchain”, Harvard Business Review, vol. 95,
no. 1, pp. 118-127, 2017. [Online]. Available: https://www.researchgate.net/publication/
341913793 The_Truth_About_Blockchain. Accessed on: Sep. 27, 2024.

M. Kim, B. Hilton, Z. Burks, and J. Reyes, “Integrating Blockchain, Smart Contract-Tokens,
and 10T to Design a Food Traceability Solution”, in Proc. 2018 IEEE 9th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver,
2018, pp. 335-340. doi: https://doi.org/10.1109/IEMCON.2018.8615007.

T.L. Saaty, Principia Mathematica Decernendi - Mathematical principles of decision making -
Generalization of the Analytic Network Process to neural firing and synthesis, Pittsburg, PA,
USA: RWS Publications, 2010.

V. Tsyganok, S. Kadenko, O. Andriychuk, and P. Roik, “Usage of multicriteria decision-
making support arsenal for strategic planning in environmental protection sphere”, Journal of
Multi-Criteria Decision ~ Analysis. vol. 24, pp. 227-238, 2017. doi:
https://doi.org/10.1002/mcda.1616.

V.G. Totsenko, and V.V. Tsyganok, “Method of paired comparisons using feedback with
expert”, Journal of Automation and Information Sciences, vol. 31, no. 7-9, pp. 86-96, 1999.
doi: https://doi.org/10.1615/JAutomatinfScien.v31.i7-9.480.

P.R. Manoj, Ethereum Cookbook: Over 100 Recipes Covering Ethereum-Based Tokens,
Games, Wallets, Smart Contracts, Protocols, and Dapps, Birmingham, UK: Packt Publishing
Ltd., 2018.

K. Wotk, “Advanced social media sentiment analysis for short-term cryptocurrency price
prediction”, Expert Systems, vol. 37, no. 2, 2020. doi: https://doi.org/10.1111/exsy.12493.
V.V. Tsyganok, and S.V. Kadenko, “On sufficiency of the consistency level of group ordinal
estimates”, Journal of Automation and Information Sciences, vol. 42, no. 8, pp. 42-47, 2010.
doi: https://doi.org/10.1615/JAutomatinfScien.v42.i8.50.

The article was received 14.07.2024.

CIINCOK BUKOPUCTAHUX TKEPEJI
V.V. Tsyganok, S.V. Kadenko, and O.V. Andriichuk, “Significance of expert competence
consideration in group decision making using AHP”, International Journal of Production
Research., vol. 50, no. 17, pp. 4785-4792, 2012. doi: https://doi.org/10.1080/00207543.
2012.657967.
D. Mookherjee, “Decentralization, hierarchies, and incentives: A mechanism design
perspective”, Journal of Economic Literature, vol. 44, no. 2, pp. 367-390, 2006. doi:
https://doi.org/10.1257/jel.44.2.367.
S. Raval, Decentralized Applications: Harnessing Bitcoin's Blockchain Technology.
Cambridge, MA, USA: O'Reilly Media, Inc., 2016.
N. Savchenko, V. Tsyganok, and O. Andriichuk, “A Cost-Effective Approach to Securing
Systems through Partial Decentralization”, Information & Security: An International Journal,
vol. 47, no. 1, pp. 109-121, 2020. doi: https://doi.org/10.11610/isij.4707.
M. Arapinis, A. Gkaniatsou, D. Karakostas, and A. Kiayias, “A Formal Treatment of Hardware
Wallets”, in Financial Cryptography and Data Security. FC 2019, I. Goldberg, T. Moore, Eds.,

196

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

vol. 11598. Cham: Springer, 2019, pp. 426-445. doi: https://doi.org/10.1007/978-3-030-32101-
7_26.

M. Pustisek, and A. Kos, “Approaches to front-end loT application development for the
Ethereum blockchain™, Procedia Computer Science, vol. 129, pp. 410-419, 2018. doi:
https://doi.org/10.1016/j.procs.2018.03.017.

H. Rezaeighaleh, and C.C. Zou, “New Secure Approach to Backup Cryptocurrency Wallets”,
in Proc. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA,
2019, pp. 1-6. doi: https://doi.org/10.1109/GLOBECOM38437.2019.9014007.

D. Khovratovich, and J. Law, “BIP32-Ed25519: Hierarchical Deterministic Keys over a Non-
linear Keyspace”, in Proc. 2017 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), April, 2017, pp. 27-31. [Online]. Available: https://input-output-
hk.github.io/adrestia/static/Ed25519 BIP.pdf. Accessed on: May 26, 2024.

S. Cho, S.Y. Park, and S.R. Lee, “Blockchain consensus rule based dynamic blind voting for
non-dependency transaction”, International Journal of Grid and Distributed Computing, vol.
10, no. 12, pp.93-106, 2017. doi: https://doi.org/10.14257/ijgdc.2017.10.12.009.

A. Ouaddah, A.A. Elkalam, and A.A. Ouahman, “Towards a novel privacy-preserving access
control model based on blockchain technology in 1oT”, in Europe and MENA Cooperation
Advances in Information and Communication Technologies. New York, USA: Springer, 2017,
pp. 523-533. doi: https://doi.org/10.1007/978-3-319-46568-5 53.

M. Mulders, “Comparing ERC20, ERC223, and the new Ethereum ERC777 token standard”.
[Online]. Available: https://www.cointelligence.com/content/comparison-erc20-erc223-new-
ethereum-erc777-token-standard. Accessed on: May 27, 2024.

S.J. Wels, “Guaranteed-TX: The exploration of a guaranteed cross-shard transaction execution
protocol for Ethereum 2.0”, Master's thesis, University of Twente, Enschede, Netherlands,
2019. [Online]. Available: https://purl.utwente.nl/essays/79884. Accessed on: May 27, 2024.
J.Y.Lee, “A decentralized token economy: How blockchain and cryptocurrency can
revolutionize business”, Business Horizons, vol. 62, no. 6, pp. 773-784, 2019. doi:
https://doi.org/10.1016/j.bushor.2019.08.003.

M. lansiti, and K.R. Lakhani, “The truth about blockchain”, Harvard Business Review, vol. 95,
no. 1, pp. 118-127, 2017. [Online]. Awvailable: https://www.researchgate.net/publication/
341913793 The_Truth_About_Blockchain. Accessed on: Sep. 27, 2024.

M. Kim, B. Hilton, Z. Burks, and J. Reyes, “Integrating Blockchain, Smart Contract-Tokens,
and loT to Design a Food Traceability Solution”, in Proc. 2018 IEEE 9th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver,
2018, pp. 335-340. doi: https://doi.org/10.1109/IEMCON.2018.8615007.

T.L. Saaty, Principia Mathematica Decernendi - Mathematical principles of decision making -
Generalization of the Analytic Network Process to neural firing and synthesis, Pittsburg, PA,
USA: RWS Publications, 2010.

V. Tsyganok, S. Kadenko, O. Andriychuk, and P. Roik, “Usage of multicriteria decision-
making support arsenal for strategic planning in environmental protection sphere”, Journal of
Multi-Criteria Decision Analysis. vol. 24, pp. 227-238, 2017. doi:
https://doi.org/10.1002/mcda.1616.

V.G. Totsenko, and V.V. Tsyganok, “Method of paired comparisons using feedback with
expert”, Journal of Automation and Information Sciences, vol. 31, no. 7-9, pp. 86-96, 1999.
doi: https://doi.org/10.1615/JAutomatinfScien.v31.i7-9.480.

P.R. Manoj, Ethereum Cookbook: Over 100 Recipes Covering Ethereum-Based Tokens,
Games, Wallets, Smart Contracts, Protocols, and Dapps, Birmingham, UK: Packt Publishing
Ltd., 2018.

K. Wolk, “Advanced social media sentiment analysis for short-term cryptocurrency price
prediction”, Expert Systems, vol. 37, no. 2, 2020. doi: https://doi.org/10.1111/exsy.12493.

197

P-ISSN 2411-1031. Information Technology and Security. July-December 2024. Vol. 12. Iss. 2 (23)

[21] V.V. Tsyganok, and S.V. Kadenko, “On sufficiency of the consistency level of group ordinal
estimates”, Journal of Automation and Information Sciences, vol. 42, no. 8, pp. 42-47, 2010.
doi: https://doi.org/10.1615/JAutomatinfScien.v42.i8.50.

BITAJIIM [IMT AHOK,
MUKUTA CABYEHKO,
POMAH IIUT"AHOK

VHIBEPCAJIBHMI ~ METOJA JEJETYBAHHSI ~ TPAH3AKLIA Juid
JENEHTPAJI3OBAHUX CUCTEM MIITPUMKH IPUAHSTTS PIIIEHD

VY 1poMy AOCHIIKEHHI PO3MIISAAIOTECS METOIM JICHeHTpajizamii oO4YucieHs 1 30epiranas
JaHUX 7S MiABUIIEHHS O€3MeKH CHUCTEM, 30CEPeKYIOUMCh Ha CUCTeMaX MIATPUMKHU MPUHHSATTS
pillieHb SK Ha MPUKJIIA/1i BAKOPUCTAaHHS. Bu3HaueHo 3aranbHi 0OMeKeHHs IeIeHTpasi3alii CHCTeM Ta
3allpONOHOBAHO HOBHMU yHIBEpCAJbHUI METOX JeNeryBaHHA TPAaH3aKIii s CIPOILICHHS
BUKOPHUCTAHHS JEIEHTPaANi30BaHUX CUCTeM. HaBeAeHO orisii AOCTYMHHMX METOIB JAeNeryBaHHS
TpaH3aKliii y caMO3axWILEHUX [elEHTpPaTi30BaHuX IuUIaTGopmMax JaHUX HA OCHOBI BiIOMHX
MPOEKTIB, II0 BUKOPHUCTOBYIOTH muaTdopmy Ethereum. Bupineno wotupu mnomymnsipHi MeTOIu
JeTIETyBaHHA B JCLUEHTPANTI30BaHUX MeEpekax, MPOAEMOHCTPOBAHO X IMEpeBard Ta HEJOJIKM Ha
MIPUKJIA/II TOMUPEHUX PIllICHb.

B pesynbTari gocimkeHHs 0yiio peali3oBaHo YHIBEPCATbHUN METOJ ACTIETYBaHHS TPAH3aKIIiH,
HEe3aJeKHUI BiJl CTaHAApTy HIAMKCY JACLEeHTpali3oBaHoi mporpamu. Lleli meton peanizoBaHuil y
BUIJISII BeO-0aTKy SIK Ha CTOPOHI cepBepa, Tak 1 Ha CTOPOHi KIIi€HTa 1 MOke OyTH 3aCTOCOBaHMIA
no Oynp-iKoi JeneHTpaii3oBaHoi mporpamMu abo ICHYHYOi CHUCTEMH, [0 HIATPUMYE
JCTIEHTPaTi30BaHe JAeJeTyBaHHS TPAH3AKIINA. Y JTOCITIKEHH] TaK0XX OMHCAHO apXITEKTYPy CUCTEMHU
MIATPUMKH TPUHHATTS PilleHb 3 BHKOPHCTAaHHSIM LBOTO METOMAY, 3aCTOCOBAHOTO KOHKPETHO 0
€KCIIEPTHOI MIJCUCTEMH I 3a0e3IeUeHHs AeIeHTpaIi3allii Ta MIJTICHOCTI €KCIIePTHUX JaHMX, 10
YHEMOXUIUBITIOE 1X (panbcudikailito micis moJaHHs.

KpiM TOrO, mEeperisHyTo €KOHOMIYHY MOJENTh E€KCHEPTHOI MiJICUCTEMH 3 BHKOPUCTAHHIM
peampbHUX JaHUX. Pe3ynbTraT IOTO JOCH/DKEHHS JO3BOJIIIOTH CTBOPIOBATH Oe3MedHi
JICIIeHTpaNi30BaH1 JOJATKU Ha JCLEHTPaI30BaHUX IIaTGopMax JaHUX 3 aKLIEHTOM Ha 3pY4HICTb 1
IIPOCTOTY BUKOPUCTAHHS, a TAKOXK JEMOHCTPYIOTh IHHOBALII{HE 3aCTOCYBaHHS B CUCTEMI MIATPUMKHU
MPUHHSTTA PillIeHb Ui 300py €KCIEPTHUX 3HAHD.

KurouoBi cioBa: neneHtpanizoBaHi miuargopMu JaHUX, JA€lEeroBaHl TpaH3aklii, CUCTEMHU
HIATPUMKH IPUHHATTS pillleHb, €KCIIEPTHI AaHi, OnokyeiiH, Ethereum.

Tsyganok Vitaliy, doctor of technical science, professor, professor at the cybersecurity and
application of information systems and technologies academic department, Institute of special
communications and information security of National technical university of Ukraine “Igor Sikorsky
Kyiv Polytechnic Institute”, Kyiv, Ukraine, ORCID 0000-0002-0821-4877, tsyganok@ipri.kiev.ua.

Savchenko Nikita, postgraduate student, Institute for information recording of National
academy of sciences of Ukraine, Kyiv, Ukraine, ORCID 0000-0003-1107-0461,
zitros.lab@gmail.com.

Tsyhanok Roman, student, National technical university of Ukraine “Igor Sikorsky Kyiv
Polytechnic Institute”, Kyiv, Ukraine, ORCID 0009-0002-6156-3037, tsyganok2018@gmail.com.

Huranok Bitaniii BorogumMupoBuy, 10KTOp TEXHIYHUX HAYK, Tpodecop, mpodecop kadenpu
Ki0epOe3neKu 1 3acTocyBaHHS 1HYOPMALIHUX CUCTEM 1 TEXHOJOT1H, [HCTUTYT crieniaibHOro 3B’ 13Ky
Ta 3axucty 1HQopmanii HamioHampHOro TexHIYHOro yHiBepcuteTryYkpainu “KuiBcekuii
noJiTexHiuHui iHcTUTYT iMeHi Iropst Cikopeskoro”, Kuis, Ykpaina.

CaBuenko Muxkuta MukoaaiioBusi, acnipatt, [HCTUTYT mpobiem peectparii iHpopmarii
HarmionansHoi akagemii Hayk Ykpainu, Kuis, YkpaiHa.

Huranoxk Poman BiraaiiioBuu, crygenrt, HamionanbHuil TeXHIYHUI yHIBEepcUTET YKpaiHu
“KuiBcbkuil noniTexHigyHuit iHcTUTYT iMeH1 Irops Cikopebkoro”, Kuis, Ykpaina.

198

