
P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

© V. Sokolov, D. Sharadkin, 2021

67

MATHEMATICAL AND COMPUTER MODELING

DOI 10.20535/2411-1031.2021.9.1.249812

UDC 004(942+ 4'242)

VOLODYMYR SOKOLOV,

DMYTRO SHARADKIN

PROGRAMMING MODEL BASED ON METAMORPHOSIS OF ACTIVE DYNAMIC

COMPOUNDS OF OBJECTS

The paper presents the results of research on the creation of the programming model that uses

structural changes in the program during execution. The urgency of the work is due to the fact that

during the creation of large software systems there are problems associated with the complexity of

their creation and maintenance, excessive consumption of memory and a large amount of time

during execution. The base architecture is an integrated object architecture in which the program

consists of active dynamic object compounds that can form dynamic connections with other objects

to perform calculations. The cases when sequential transformation of compounds is necessary to

reduce the complexity of the program are considered and the corresponding theoretical

substantiation is given. The concept of metamorphosis of the program at runtime as a sequence of

stages of changing the set of objects and the topology of their connections is introduced. The set of

metamorphosis operations that affect the structure of the compound, as well as the set of operations

for changing the state of compounds that determine changes in the values of the input and output

connectors of objects are determined. Two kinds of metamorphosis are considered, with complete

and incomplete transformation. Most attention is paid to metamorphosis with incomplete

transformation when subset of the objects of the previous stage passes to the next one. Three

equivalent forms of programming model have been developed: a structural model, a lifeline model

of objects and connections, and an operational model. The structural model specifies the topology

of the compounds of each stage without transformation operations. The lifeline model identifies the

stage numbers at which objects and connections are created and destroyed, without explicitly

defining the topology of the stage compounds. The operational model is specified by operations of

formation of stages of metamorphosis without explicit definition of structure of compounds. Each

form of the model contains state change operations that perform data input, objects activation, and

output of results. The formal syntax of the structure of the program generated from the model is

presented, as well as the cases of use and application in integrated objects in the form of isomeric

metamorphosis and metamorphosis of the zero cycle. The obtained results allow simplifying the

structure of the program and reduce the amount of code that can be generated automatically.

Keywords: program metamorphosis, active dynamic compounds of objects, programming

model, software engineering.

Problem statement. When creating large software systems, there are problems associated

with the complexity of their creation and maintenance (so-called “software entropy”), excessive

consumption of memory, and high time spent on execution. As stated in Wirth’s empirical law,

“Software is getting slower more rapidly than hardware is becoming faster”.

The complexity is affected not so much by the size of the system (number of elements and

their functions) as by the number and variety of connections of elements. The main principle of

complexity reduction is the hierarchical decomposition of complex systems into simpler

subsystems, which in software engineering are called modules. The consumption of memory is

affected by the number of elements of the system that are simultaneously in the memory. The way

to reduce the consumption of memory is dynamic memory management on the principle to create

P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

68

elements later and destroy them early if the software architecture allows it. Reducing program

execution time is achieved by reducing redundant computing and parallel execution, if, again, the

program architecture allows it. Therefore, finding ways to reduce the complexity, memory usage,

and execution time of programs remains a pressing issue. To address this issue, it’s necessary to

develop new software architectures and programming models that allow performing hierarchical

decomposition, dynamic memory management, and performance management at runtime.

Imperative programming paradigms are characterized by certainty and manageability of

calculations, while declarative paradigms provide a greater level of abstraction and have the

potential to reduce the complexity of creating large systems. Therefore, according to the authors,

the use of a multi-paradigm approach to the creation of large systems is promising, when the lower-

level elements are built imperatively, and declarative paradigms are used at the upper levels, which

allows building a program of larger and managed “building” blocks. For example, in the

architecture of integrated objects (AIO) [1], which is the development of the authors, a special style

of creating objects with elements of a functional approach to the computational model is applied

and demonstrated the use of SQL-like language to describe the program with the ability to generate

complete program code in C++ [2].

The disadvantages of object-oriented programming (OOP), as a kind of procedural modular

programming, are the lack of mathematical basis, the opacity of inheritance mechanisms, the

presence of a large number of types (classes) that are “smeared” throughout the program, the

difficulty of understanding the semantics of the program. As a result, OOP does not solve the

problem of complexity but contains the means of modular decomposition (the module is considered

a class) and performance management at runtime. Application of model-driven architecture (MDA)

using, for example, Unified Modeling Language (UML) based on OOP has promising prospects,

but all attention is focused on creating a model of the domain and its mapping into action language,

but the architecture of the program remains out of attention. Little attention is paid to the problem of

describing and analyzing structural changes of the program during execution. For example, in

UML, the issue of creating and destroying objects is only reflected in a certain way in the sequence

diagram, but it does not specify the exact moment of creation and destruction of objects. Most

diagrams that show the dynamics of the program actually show the dynamics of data processing

(changes in the state of objects), rather than the dynamics of changes in the structure of the

program.

Functional programming (FP) uses a composition of functions as a programming model, but

due to the complexity of solving certain classes of problems, real FP languages deviate from the

pure functional model and are supplemented by certain features of imperative languages. The

composition of the functions in the FP is mostly static structures, there is no means to control the

dynamic compositions, memory, and performance.

Typical topologies of compounds of integrated objects, considered in [3], allow to represent

programs by schemes of compounds with static structure but do not use dynamic possibilities of

compounds to the full. Therefore, a programming model is needed that will provide a representation

of:

- operations of creation and destruction of objects as a mechanism of memory management;

- dynamic scheme of interaction of objects;

- the order of calculations.

Thus, the essence of the problem is the lack of models that reflect structural changes in the

program during its execution, the difficulty of representing programs in static schemes, and the lack

of acceptable for code generation tools of describing programs that change their structure during

execution.

Analysis of recent research and publications. The analysis of recent publications and

research has shown that the current direction of researching is the development of new and

improvement of existing methods and tools for the high-level, close-to declarative, presentation of

software models with automatic source code generation for imperative programming languages.

P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

69

Thus, in [4] - [7] model-driven architecture and ways of automatic transition from the design of the

system, the model of which is presented in UML, to the development of program code with minimal

manual intervention are considered. This direction is supported by the development of executable

UML (xUML), which influenced the creation of the Foundational UML standard (fUML). fUML is

based on Action Language for Foundational UML (ALF), which is a standard action language

specification by the Object Management Group. ALF specifies the executable semantics of the

subject area.

One of the significant disadvantages of ALF is no support for the implementation of specific

constructs, such as aggregation and composition. UML actions, as elements of activities, contain

object actions and link actions (read, write, create, destroy association). Object actions include both

object access operations and creation and destruction operations. In [4] a generalized analysis of

xUML is given and conclusions are obtained, among which are the following:

- the most commonly used to represent models are diagrams of classes, states, and

activities;

- the most popular languages for describing actions are UML actions, C ++, Java;

- areas of improvement are enhanced observability of executing models, enhanced control

of model execution, and direct compilation of the model to executable files.

In [5], a design pattern-based implementation of a state machine with hierarchical, concurrent,

and history states is presented, which keeps the semantics of state hierarchy and concurrency and

history state as well that allows improving the quality of the generated code. In [6] a general

analysis of the problems of code generation from UML-diagrams was carried out and the general

conclusion was made that “there is still a huge gap in automatically transforming all UML diagrams

to several source codes for use in a wide variety of platforms”. In [7], several textual and graphical

tools for ALF implementation are considered to supplement the executed semantics with program

code texts that define the structure and behavior of the model, with automatic code generation in

Java. [8] also considers the solution to supplement UML-diagrams with profile texts as a hybrid

representation of the model with different notations, that reduces the effort to synchronize the

different notations of the model.

Other non-UML research works also use graphical notation, but for a lower level of program

representation. Thus, in [9] a general analysis of tools for visual programming languages (VPL) was

conducted, and all the VPL-tools were classified as follows:

- form-based tools for building a functional user interface by dragging visual components

into the form;

- diagram-based tools for building a program by connecting visual components, where the

output of a component is the input of data for another component, which may represent data sets

and algorithms, or simply represent graphical components;

- block-based tools for building a program by combining visual blocks that connect like a

puzzle, where blocks represent programming constructs such as variable settings or loops, or

interactive components such as a map;

- icon-based tools for building a program by connecting icons to represent the data flow,

when icons represent services such as locating a user or saving a file, for example, allowing end

users to create mobile applications.

In [10], the issue of role-based component interaction using set-oriented programming (SOP)

is considered to be one of the latest collaboration paradigms. The SOP paradigm is based on two

abstractions: component and set. A component is an uncomplicated entity that represents

collaboration. It defines the roles of the objects involved in the cooperation. Objects that have the

same role in the component (collaboration) form a set. In SOP, an application is a collection of

components. One of the components is the main component, which determines the complete

behavior of the program. Others must be created in order to be used. This facilitates code reuse,

improves the structure and understanding of the program.

P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

70

In [11] the approach to the organization of interaction of components by means of the

declarative approach based on queries for manipulation of relations between attributes of various

objects is presented. The rule-based write operation allows to update the status. Control is achieved

through queries that select the mixing classes that are active in each object. Dynamic activation and

deactivation of declarative classes of mix allows to decompose functionality into small classes that

are used repeatedly. The programming style in a language is functional and reactive, and functional

programs define the members of an object. Queries are a type of function that also serves as an

adhesive that combines these functions to provide input. Because queries declaratively describe

what they return, they leave the system to implement the method of receipt. Combining this with the

organization around objects makes the language extremely suitable for complex interactive

applications managed by large amounts of data from different sources. The works of the authors [1] -

[3] are devoted to the consideration of various aspects of AIO, the application of functional and

relational models in OOP, and the topology of ADC schemes.

Thus, the analysis of recent publications and research shows that the main direction of efforts

is aimed at developing formal and graphical tools for modeling the interacting components of

software systems with automatic generation of the maximum possible code in imperative

programming languages. Insufficient attention is paid to the issue of modeling the dynamics of

changes in the structure of interaction of system elements and their positive consequences.

The purpose of the article is reducing the complexity of software built on AIO by

developing a programming model that comprehensively describes the dynamically changing

structures of the programs, allowing easy source code generation.

The main material research. In the process of studying the methods of applying ADC

technology to solve various practical problems, there was a problem of complexity of the

representation of schemes of compounds in some cases. The analysis of such cases led to their

classification into the following classes:

- cases when the scheme of program presentation has excessive complexity for its

understanding and practical application;

- cases where the complexity of the compound can be obviously simplified.

The greatest complexity is caused by functions which at the calculation of a certain problem should

be applied to a sequence of values of arguments, especially when it has more than one argument and

set of their values are a result of the application of other functions:

 }),1),(|({}{ nizfxxfy iiiii === . (1)

For example, the calculation of two values

   ))(),((,y 2211321 xfxffy =

is essentially a sequential application of the function 3f to the results of the calculation of the other

two functions:

1.))((y 1131 xff= .

2.))((y 2232 xff= .

The essence of the problem lies in the need to sequentially change the input of the function 3f

. For this example, it is possible to use a static scheme of the compound with switching connections,

which contains two switches 1s , 2s and two-step activator a (Fig.1).

Figure 1 – Switching scheme with two-step activator

P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

71

Such a scheme can be too complex if the functions have more than one argument and must be

applied to more than two consecutive values. Another approach involves abandoning the static

scheme and splitting the computational process into successive steps, each of which changes the

structure of the compound. The first option offers an implementation with two outputs 1y , 2y and

successive changes in the structure of the compound (Fig. 2). The second option also involves a

sequential change in the structure of the compound with a change in the value of one instance of the

output y (Fig.3).

Figure 2 – Transformation of the scheme with two outputs

Figure 3 – Transformation of the scheme with one output

On the other hand, if consider the topology of complex compounds that do not have similar

problems, we can find excessive computational complexity, if certain objects of compounds have a

sufficiently high reuse rate. The basis for the sequential decomposition of a compound is the fact

that objects in an adequate (calculated) state are able to store the values of input and output

connectors (arguments and function values) even when the connections are broken.

Thus, any compound that implements a composition of functions 2 1 1
(())f f x , taking into

account that

111 : yxf → , 222 : yxf → , 12 yx = ,

can be divided into successive stages of calculations (Fig. 4):

1.)(y 111 xf= .

2.)(y 122 yf= .

Figure 4 – Scheme of decomposition of nested functions into successive stages

For example, Figure 5 shows a scheme in which the object 3f is activated many times, even

without changes in input values. Such a scheme can also be subjected to decomposition.

Figure 5 – Decomposition of the compound with excessive activation

P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

72

In fact, such a decomposition corresponds to the partition of a large compound into modules,

which must take into account the principle of “strong” links within the module and “weak” links

between modules. A nodal object is an object that has a lot of links. Considered as a candidate to be

a border to perform the decomposition of the compound to the stages. A transit object is an object

that transfers data from one part of a compound to another between stages. Often, a nodal object

becomes a transit object after decomposition (3f on Fig.5).

The above examples show that:

- static switching schemes are more complex, given the number of objects and connections;

- schemes with the transformation of the structure of the compound are simpler, allow

dynamic changing the set of objects and connections (at each stage we can have only the necessary

objects);

- schemes with excessive activation can be simplified by sequential transformation.

Metamorphosis. Changes in the program that occurs over a period of time can be considered

as a metamorphosis. There are two classes of metamorphosis:

- life cycle metamorphosis (LCM) – metamorphosis that occurs during the life cycle of the

program by changing the source text, the composition of the modules and the structure of their

interaction;

- run-time metamorphosis (RTM) – metamorphosis that occurs during the execution of the

program by changing the composition of program objects and their connections.

RTM is the subject of research of this work and by metamorphosis, in this work, we will understand

the only metamorphosis during execution.

Consider the definitions. Composite is a set of unconnected compounds. In the general case,

the program in the AIO can be considered as a composite consisting of one or more compounds.

Metamorphosis is a sequential process of changing the structure of a program, consisting of stages,

each of which is determined by the set of objects and the topology of objects connections.

The structural formula of metamorphosis determines the structure of the program at each stage:

 }1,,1,,|{ === mmiConObjMMM iiii , (2)

where  iijiji JjObjNameClassNameObj ,1|:: == – set of objects on i-stage;

 iikiki KkorOutConnectrInConnectoCon ,1|, == – set of connections on i-stage.

Another approach is to define a lifeline (LL) for each object and connection with reference to

the stages of metamorphosis and to use the LL to determine the structure of the compound at each

stage. The lifeline is defined by a pair of stage numbers DC, , where С – the number of the stage

at the beginning of which the creation occurs, D – the number of the stage at the end of which the

destruction occurs, DC  .

Then the formula of metamorphosis on the basis of LL can be set as follows:

 conobjL LLM ,= , (3)

where  KkDCL kkobj ,1|, == – set of LL of the objects;

 NnDCL nncon ,1|, == – set of LL of the connections.

Consider the definitions. Local objects are objects whose LL begins and ends at the same

stage of metamorphosis. Global objects are objects whose LL begins in the first and ends in the last

stage of metamorphosis. Other objects are considered non-local.

We will consider the following types of metamorphosis:

- metamorphosis with complete transformation (MCT) – when the next stage does not

contain the objects of the previous stage;

- metamorphosis with incomplete transformation (MIT) – when some objects of one stage

transfer to the next stage.

P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

73

The program, which is a composite of compounds, in terms of metamorphosis can be

represented by one of the following methods (Fig.6):

1. By including all compounds of a composite to the first stage (create all – activate all –

destroy all), and it is possible to activate them both consistently, and in parallel.

2. By putting each compound of a composite in a separate stage with consecutive full

transformation, and executing operations consistently for each stage (create – activate – destroy).

Figure 6 – Representation of the composite as MCT

Programming model. To clarify the essence and describe the transition from one stage of

metamorphosis to another, consider the operations that affect the transition processes.

Metamorphosis operations include operations that change the structure of the compound, but

do not change the state of objects:

- creation of an object;

- establishing a connection;

- destruction of the object;

- disconnection.

The operations of changing the state of the compound objects include the following

operations:

- setting the values of the input connectors of objects;

- activation of objects and getting values of their output connectors.

For a program that contains only one stage, it is enough to create and connect all objects, set

input values, activate the outputs of objects, output the required results, and then destroy all objects.

But due to the fact that each individual operation of metamorphosis changes the structure of the

compound, the question arises when the formation of stage begins and ends.

Let’s assume that the formation of the stage begins with the first change in the structure of the

compound of the previous stage and ends with the first change in the state of the objects of the

compound. In essence, the beginning of the formation of a new stage can be considered a process of

transition to the next stage, including case if the stage is only one. This may be a formal sign of

determining the stages of metamorphosis during reverse-engineering.

When transiting from one stage to the next in the case of MIT, some objects and connections

move to the next stage, and some are destroyed.

The programming model can be defined by three various forms.

1. Structural model (SM) – explicitly specifies the topology of compounds and changing the

state of the objects of each stage, and taking into account (2) has the following form:

 }1,,1|,,{ == mmiSOConObjSM iii , (4)

where iSO – state change operations block of i-stage.

2. Life line model (LM) – the topology of compounds of each stage is specified implicitly by

the LL and taking into account (3) has the following form:

 == }1,,1|{,, mmiSOLLLM iconobj . (5)

3. Operational model (OM) – the topology of compounds is implicitly specified by

metamorphosis operations, and changing the state of the objects are specified explicitly:

P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

74

  1,,1|, == mmiSOMOOM ii , (6)

where iMO – metamorphosis operations block.

All models are equivalent and each model can be derived from any other. The structural

model (4) is more suitable for structural analysis, the life lines model (5) allows to control the

dynamics of objects and interactions, and the operational model (6) is well suited for describing the

implementation and automatic code generation of the program.

Ways of describing programming model. The representation of the model can be

implemented in various ways for practical application for software development.

For designing:

- graphically in the form of a sequence of schemes of compounds of each stage of

metamorphosis;

- by formulas of compounds of each stage;

- by tables of schemes of compounds of each stage.

For implementation:

- by LL tables of objects and connections;

- by using SQL-like language;

- in the form of the program text.

The transition from the design to programming can be done manually or by automatically

generating the program text.

Source code generation. The generation of the program looks rather trivial: the program is a

sequence of stages, each of which is represented by blocks of creation of objects, creation of

connections; setting inputs, activating of outputs, output the results; destruction of connections,

destruction of objects. The structure of the program in Backus-Naur Form is as follows:

Listing 1

Program::={Stage} {DeleteObject}

Stage::=<MetaOperations><StateOperations>

MetaOperations::={ NewObject | NewConnection | DeleteObject | DeleteConnection}

StateOperations::={[<InConnector>.set(<value>)] | <OutConnector>.get() | [OutputData]}

The syntax of the operations is determined by the target language and programming model.

Integration. Compounds with metamorphosis can be integrated into classes, which will allow

to reuse such objects in different schemes to solve problems. In this case, the stages of

metamorphosis are used in the process of activating the function of the nucleus of the object using

the following options:

- isomeric metamorphosis (IM): when creating an integrated object all internal objects

should be created too but without connections (they become global objects for all stages), at the

stages of metamorphosis only the connections should be changed, and at the end of the calculations

all the connections should be destroyed (Fig. 7);

- metamorphosis of the zero cycle (MZC): when creating an integrated object do not create

internal objects at all, in the process of calculations to create objects and connections by stages

(avoid global and non-local objects), and after the calculations to destroy all objects (Fig. 8).

Figure 7 – Isomeric metamorphosis of an integrated object

P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

75

Figure 8 – Metamorphosis of the zero cycle of an integrated object

In both cases, the metamorphosis process is started only if the integrated object is not in an

adequate state, or the data on the input connectors has changed. In adequate state, the values are

stored in the input and output connectors. IM uses more memory, but runs faster. It’s possible to put

objects creation on the class constructor, change connections and activate them if necessary in the

nucleus function, and destroy all objects in the class destructor. MZC, on the other hand, uses less

memory and runs slower, mainly due to object creation and destruction operations. All operations

rely on the nucleus function, which activates the process of metamorphosis only when necessary.

Such integrated metamorphic objects are not subject to autonomous disintegration, or require

decomposition to the stages of metamorphosis of the whole compound into which they belong.

Integration, on the one hand, allows the formation of a hierarchy of classes of compounds, and on

the other hand allows the use of objects with linear metamorphosis in switching (branched) and

iterative (cyclic) schemes.

Example. Consider the solution of a simple problem to demonstrate the application of the

developed model. Given an array of numbers, we need to enter the value of the array, find the

minimum value and output the elements of the array reduced by the minimum value.

This problem is difficult to solve by a combinational scheme, namely: the array requires the

entry of values only once, the minimum must receive the initial value, and then change; after

finding the minimum, it must be subtracted from each element during output. To solve this

problem, the process must be divided into three stages:

1. Input the values of the array and assign the value of zero element to minimum;

2. Find the minimum value;

3. Print the values of all elements reduced by the minimum value.

Schemes of compounds at each stage of metamorphosis can be represented graphically (Fig. 9).

Analyzing the stages, we can determine the following:

- objects ‘A’, ‘Min’, ‘For’ are global for all stages (reused);

- some connections of global objects are saved, and some change in the following stages,

there are some local objects that are needed only at one stage;

- to calculate the compounds at each stage, it is enough to call the output ‘z’ of the ‘For’

object.

The fragment of the source code of the program in C ++ for the third stage has the following

form:

Listing 2

#include "Connectors.h"

…

int main(){

 …

// Deleting previous objects and connections

delete Gt;

delete IF;

Min->x.disconnect();

// Create objects of Stage3

TMinus<float> * Minus = new TMinus<float>;

WriteCon<float> * Write = new WriteCon<float>;

// Create connections of Stage3

P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

76

Connection(Minus->x, A->Xi);

Connection(Minus->y, Min->Xp);

Connection(Write->x, Minus->z);

Connection(For->x, Write->y);

// Activate Stage3

For->z.get_value();

// Delete all objects

delete A;

delete Min;

delete For;

delete Write;

delete Minus;

return 1;

}

a) Stage 1

b) Stage 2

c) Stage 3

Figure 9 – Stages of metamorphosis of the compound

Use cases. The developed programming model on the basis of metamorphosis can be applied

in the following cases:

- when objects need to change the input connections to solve the problem;

- there is a need to reuse the same objects at different parts of the compound;

- there is a need to simplify complex schemes of compounds;

- there is a need to increase the efficiency of calculations;

- to prevent re-entry of data and over-activation of compound with controllers;

- transferring data by transit objects between compounds.

P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

77

Conclusions. The developed programming model based on metamorphosis of active dynamic

compounds of objects allows reaching such positive results:

- reducing software complexity by decomposing its structure to more simple metamorphic

stages of compounds of objects with sequential transformations;

- improving object lifecycle management with the ability to flexibly control memory

consumption and program productivity;

- the possibility of applying the model both during software design and directly during the

creation of source code manually, as well as for the formal description and analysis of the dynamics

of structural change of the system;

- simplifying source code generation with the possibility of using a parallel or sequential

model of calculations.

The direction of future research on this topic is the construction of conditional and iterative

stages of metamorphosis.

REFERENCES

[1] V. Sokolov, “Architecture of software based on integrated objects”, Information Technology

and Security, vol. 5, no. 2, pp. 51-59, July-December 2017, doi: https://doi.org/10.20535/

2411-1031. 2017.5.1.120559.

[2] V. Sokolov, “Application of functional and relational models in object-oriented

programming”, Information Technology and Security, vol. 5, no. 1, pp. 54-63, January-June

2017, doi: https://doi.org/ 10.20535/2411-1031.2017.5.1.120559.

[3] V. Sokolov, “Topologies of schemes of active dynamic compounds of objects”, Information

Technology and Security, vol. 7, no. 1, pp. 56-68, January-June 2019, doi: https://doi.org/

10.20535/2411-1031.2019.7.1.184324.

[4] F. Ciccozzi, I. Malavolta, and B. Selic, “Execution of UML models: a systematic review of

research and practice”, Software & Systems Modeling, vol. 18, no. 18, pp. 2313-2360, 2019,

https://doi.org/10.1007/s10270-018-0675-4.

[5] E. V. Sunitha, and S. Philip, “Automatic Code Generation From UML State Chart Diagrams”,

IEEE Access, vol. 7, pp. 8591-8608, 2019, doi: https://doi.org/10.1109/ACCESS.2018.

2890791.

[6] Maryam I. Mukhtar, and Bashir S. Galadanci, “Automatic code generation from UML

diagrams: the state-of-the-art”, Science World Journal, vol. 13, no. 4, pp. 47-60, 2018.

[7] T. Buchmann, and A. Rimer, “Unifying Modeling and Programming with ALF”, in Proc. 2nd

International Conference on Advances and Trends in Software Engineering (SOFTENG

2016), Lisbon, Portugal, 2016, pp. 10-15.

[8] L. Addazi, F. Ciccozzi, P. Langer, and E. Posse, “Towards Seamless Hybrid Graphical–

Textual Modelling for UML and Profiles”, in Proc. European Conference on Modelling

Foundations and Applications, Marburg, Germany, 2017, pp. 20-33, doi:

https://doi.org/10.1007/978-3-319-61482-3_2.

[9] M. A. Kuhail, S. Farooq, R. Hammad, and M. Bahja, “Characterizing Visual Programming

Approaches for End-User Developers: A Systematic Review”, IEEE Access, vol. 9, pp.

14181-14202, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3051043.

[10] S. Masoumi, and A. Mahjur, “Collaborative component interaction”, Ingénierie des Systèmes

d’Information, vol. 24, no. 3, pp. 321-329, 2019, doi: https://doi.org/10.18280/isi.240312.

[11] Y. Seginer, T. Vosse, G. Harari, and U. Kolodny, “Query-based object-oriented

programming: a declarative web of objects”, in Proc. 14th ACM SIGPLAN International

Symposium on Dynamic Languages, Boston, 2018, pp. 64-75, doi: https://doi.org/10.1145/

3276945.3276949.

The article was received 26.02.2021.

P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

78

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

[1] В. Соколов, “Архітектура програмного забезпечення на основі інтегральних об’єктів”,

vol. 5, no. 2, pp. 51-59, July-December 2017, doi: https://doi.org/10.20535/2411-1031.2017.

5.1.120559.

[2] В. Соколов, “Застосування функціональної та реляційної моделей в об’єктно-

орієнтованому програмуванні”, Information Technology and Security, vol. 5, no. 1, pp. 54-63,

January-June 2017, doi: https://doi.org/ 10.20535/2411-1031.2017.5.1.120559.

[3] В. Соколов, “Топології схем активних динамічних сполук об’єктів”, Information

Technology and Security, vol. 7, no. 1, pp. 56-68, January-June 2019, doi: https://doi.org/

10.20535/2411-1031.2019.7.1.184324.

[4] F. Ciccozzi, I. Malavolta, and B. Selic, “Execution of UML models: a systematic review of

research and practice”, Software & Systems Modeling, vol. 18, no. 18, pp. 2313-2360, 2019, doi:

https://doi.org/ 10.1007/s10270-018-0675-4.

[5] E. V. Sunitha, and S. Philip, “Automatic Code Generation From UML State Chart Diagrams”,

IEEE Access, vol. 7, pp. 8591-8608, 2019, doi: https://doi.org/10.1109/ACCESS.2018.

2890791.

[6] Maryam I. Mukhtar, and Bashir S. Galadanci, “Automatic code generation from UML

diagrams: the state-of-the-art”, Science World Journal, vol. 13, no. 4, pp. 47-60, 2018.

[7] T. Buchmann, and A. Rimer, “Unifying Modeling and Programming with ALF”, in Proc. 2nd

International Conference on Advances and Trends in Software Engineering (SOFTENG

2016), Lisbon, Portugal, 2016, pp. 10-15.

[8] L. Addazi, F. Ciccozzi, P. Langer and E. Posse, “Towards Seamless Hybrid Graphical–

Textual Modelling for UML and Profiles”, in Proc. European Conference on Modelling

Foundations and Applications, Marburg, Germany, 2017, pp. 20-33, doi: https://doi.org/

10.1007/978-3-319-61482-3_2.

[9] M. A. Kuhail, S. Farooq, R. Hammad and M. Bahja, "Characterizing Visual Programming

Approaches for End-User Developers: A Systematic Review", IEEE Access, vol. 9, pp.

14181-14202, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3051043.

[10] S. Masoumi, and A. Mahjur, “Collaborative component interaction”, Ingénierie des Systèmes

d’Information, vol. 24, no. 3, pp. 321-329, 2019, doi: https://doi.org/10.18280/isi.240312.

[11] Y. Seginer, T. Vosse, G. Harari, and U. Kolodny, “Query-based object-oriented

programming: a declarative web of objects”, in Proc.14th ACM SIGPLAN International

Symposium on Dynamic Languages, Boston, 2018, pp. 64-75, doi: https://doi.org/10.1145/

3276945.3276949.

ВОЛОДИМИР СОКОЛОВ,

ДМИТРО ШАРАДКІН

МОДЕЛЬ ПРОГРАМУВАННЯ НА ОСНОВІ МЕТАМОРФОЗУ АКТИВНИХ

ДИНАМІЧНИХ СПОЛУК ОБ’ЄКТІВ

Представлено результати досліджень щодо створення моделі програмування, яка

використовує структурні зміни програми під час виконання. Актуальність роботи
обумовлена тим, що під час створення великих програмних систем виникають проблеми, які
пов’язані зі складністю їх створення та супроводження, надмірним споживанням оперативної
пам’яті та великими витратами часу під час виконання. Як базову обрано архітектуру
інтегральних об’єктів, за якою програма складається з активних динамічних сполук об’єктів,
що можуть утворювати динамічні зв’язки з іншими об’єктами для виконання обчислень.
Розглянуто випадки, коли послідовна трансформація сполук є необхідною для зменшення
складності програми та надано відповідне теоретичне обґрунтування. Введено поняття
метаморфозу програми часу виконання як послідовності стадій зміни складу об’єктів та

P-ISSN 2411-1031. Information Technology and Security. January-June 2021. Vol. 9. Iss. 1 (16)

79

топології їх зв’язків. Визначено склад операцій метаморфозу, які впливають на структуру
сполуки, а також склад операцій зміни стану сполук, які визначають зміни значень вхідних
та вихідних конекторів об’єктів. Розглянуто два види метаморфозу, з повним та неповним
перетворенням. Найбільшу увагу звернено на метаморфоз з неповним перетворенням, коли
частина об’єктів попередньої стадії переходить в наступну. Розроблено три еквівалентні
форми представлення моделі програмування: структурна модель, модель ліній життя
об’єктів і зав’язків та операційна модель. Структурною моделлю задається топологія сполук
кожної стадії без операцій трансформації. Модель ліній життя визначає номери стадій, на
яких створюються та знищуються об’єкти та зв’язки, без явного визначення топології сполук
стадій. Операційна модель задається операціями формування стадій метаморфозу без явного
визначення структури сполук. Кожна форма моделі містить операції зміни стану, що
виконують введення вхідних даних, активацію об’єктів та виведення результатів. Надано
формальний синтаксис структури програми, що генерується з моделі, а також способи
застосування в інтегральних об’єктах у формі ізомерного метаморфозу та метаморфозу
нульового циклу. Отримані результати дозволяють спростити структуру програми та
зменшити обсяг коду, який може генеруватися автоматично.

Ключові слова: метаморфоз програми, активні динамічні сполуки об’єктів, модель
програмування, інженерія програмного забезпечення.

Sokolov Volodymyr, candidate of technical sciences, associate professor, associate professor at

the cybersecurity and application of information systems and technologies academic department,
Institute of special communication and information protection of National technical university of
Ukraine “Igor Sikorsky Kyiv polytechnic institute”, Kyiv, Ukraine, ORCID 0000-0002-5779-7167,
vsokolov@i.ua.

Sharadkin Dmytro, candidate of technical sciences, associate professor, associate professor
at the cybersecurity and application of information systems and technologies academic department,
Institute of special communication and information protection of National technical university of
Ukraine “Igor Sikorsky Kyiv polytechnic institute”, Kyiv, Ukraine, ORCID 0000-0001-6407-8040,
dmsh@ukr.net.

Соколов Володимир Володимирович, кандидат технічних наук, доцент, доцент
кафедри кібербезпеки і застосування інформаційних систем і технологій, Інститут
спеціального зв’язку та захисту інформації національного технічного університету
“Київський політехнічний інститут імені Ігоря Сікорського”, Київ, Україна.

Шарадкін Дмитро Михайлович, кандидат технічних наук, доцент, доцент кафедри
кібербезпеки і застосування інформаційних систем і технологій, Інститут спеціального
зв’язку та захисту інформації національного технічного університету “Київський
політехнічний інститут імені Ігоря Сікорського”, Київ, Україна.

