P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

NETWORK AND APPLICATION SECURITY

DOI 10.20535/2411-1031.2020.8.1.218003
UDC 004[942::413.4]

MYKHAILO ANTONISHYN
MOBILE APPLICATIONS VULNERABILITIES TESTING MODEL

The process of testing vulnerabilities of mobile software applications has been analysed.
This is due to the need to prevent violations of confidentiality, integrity and availability of
information. Individual users and the state as a whole benefit from the preservation of these
properties. However, in practice this is mostly neglected, and attention is paid to the functional
testing. While the known approaches of testing vulnerabilities of the mobile software applications
are focused on the study of certain aspects: either a server or a client. At the same time, the
applicability of the international standards of testing vulnerabilities in mobile software
applications has been established. A characteristic feature of their guidelines is the focus on
OWASP methodology. It determines the rating of the most critical vulnerabilities, standard and
test scenarios, tools for determining the level of security. They are summed up in OWASP Mobile
TOP 10, OWASP MASVS, and OWASP MSTG recommendations. According to OWASP
MSTG, vulnerabilities in mobile software apps are tested using OWASP MASVS. There are three
parts in these documents, which are the following: general, Android, iOS. Also, these documents
define common scenarios for each level of testing vulnerabilities in mobile software applications,
as stated in MASVS. The level of security of mobile software applications is determined based on
the results of the tests, namely: the test has been passed, the test has not been passed, and the test
is not used for the mobile software application. However, the practical use of OWASP
methodology is complicated by the focus on the client side of mobile software applications, the
subjectivity of the choice of stages and their sequence. To prevent these limitations, a model for
testing vulnerabilities in mobile software applications has been developed. A dependency graph is
used to codify this procedure. This allows you to determine the stages of testing vulnerabilities in
both client and server parts. In addition, it helps you to explain which testing stages to choose,
their order, and the appropriate tools. This justification is accomplished by building a dependency
relationship between them. An example of its formulation is “the execution of the next stage is
preceded by the execution of the previous one”. The obtained results are demonstrated in the
example of SSL pinning vulnerability testing.

Keywords: mobile application, vulnerability, MASVS, OWASP, Android, vulnerabilities
testing model, dependency graph.

Problem statement. Vulnerabilities in mobile software apps are tested to prevent data breaches
in terms of confidentiality, integrity, and availability. Both the user and the organization, or the state as a
whole, benefit from the preservation of these features [1] - [2]. However, in practice, this procedure is
frequently ignored or given insufficient attention (for example [3], Fig. 1). This is due to the importance
placed on meeting the functional requirements for mobile software applications.

Simultaneously, most methods for testing the vulnerabilities of mobile software apps are focused
on a single aspect of their use [4]. For instance, on the client or on the server. Vulnerability statistics
based on the outcomes of testing mobile software applications back this up (for example [5], Fig. 2). It’s
frequently followed by a proclivity to focus this strategy on the client. Furthermore, the arbitrary nature
with which certain actions and the entire process are interpreted and implemented. As a result,
vulnerability testing of mobile software applications is important.

Analysis of recent research and publications. Mobile software applications are tested
according to the guidelines of international and national regulations [6] - [10]. A generalized

© M. Antonishyn, 2020
49

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

description of this process is given in [6]. While the features of testing vulnerabilities of mobile
software applications are disclosed in [9], [10]. The methodological basis of these documents is the
OWASP (Open Web Application Security Project) guidelines, namely [7], [8]: OWASP Mobile
TOP 10, OWASP MASVS, OWASP MSTG. However, despite the general acceptance, their use in
practice is limited by their focus on the client’s side of the mobile software application. But at the
same time, their use is also limited by the subjectivity of the choice of stages and their sequence in
testing vulnerabilities.

80
70
60
50
40
30
20
10

0
Functional testing Load testing Vulnerability testing Usability testing

Figure 1 — Testing resources for mobile software apps are allocated based on their types

180
160

140
120
100
80
60
40
20
0
App DoS Unauthorized code Buffer overflow SQL in'exuis XSS Privilege
execution escalations

Figure 2 — Vulnerabilities of tested mobile software applications in 2019

Features of testing vulnerabilities of mobile software applications are considered in [11]. It
has been formed the limitations of the following process. One of these limitations is the necessity to
consider the details of vulnerability testing in the context of the mobile software application life
cycle. [12], [13] discuss methods for testing mobile software vulnerabilities. Their use is based on
the OWASP Mobile TOP 10 methodology. However, its practicality is limited by the focus on
testing vulnerabilities in mobile software applications and information, mostly from the mobile
device. The focus on testing vulnerabilities in mobile software applications and information, which
comes mostly from the mobile device, limits its applicability. [14] - [16] provide the steps for
evaluating mobile software vulnerabilities.

Therefore, the use of the results obtained in [11] - [16] is based on the OWASP guidelines.
But at the same time, it is limited to a focus on the client sections of mobile software applications,
subjectivity in the selection of vulnerability testing phases, and appropriate tools. The purpose of
this research is to define the characteristics of mobile software application vulnerability testing.

The aim of this paper is research is to define the characteristics of mobile software
application vulnerability testing.

50

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

The main material researches. The OWASP Mobile Security Project is a testing technique
for mobile software applications' security. It identifies the severity of the most severe
vulnerabilities, as well as standard and test scenarios and tools for assessing security. Mobile app
developers and information security experts will benefit from this course. The OWASP Mobile
Security Project's structure is interconnected; for example, the OWASP Mobile TOP 10 ranking of
the most important vulnerabilities is based on tests conducted according to the testing standard,
which is the Mobile Application Security Verification Standard. On the official OWASP page,
however, this is not properly defined. To be more precise, only the scheme of interaction between
the standard, testing scenarios and the tool for determining vulnerability assessments is given (for
example [8], Fig. 3):

a) A checklist is a tool for calculating the amount of security + security, which is
subsequently represented in graphs. This enables you to create zones with increased security.

b) Requirements - The Mobile Application Security Verification Standard (MASVS) is used
to increase and verify the level of security of mobile software applications.

c) Test Cases - The Mobile Security Testing Guide (MSTG) defines standard tests for each
stage that are described in MASVS and consists of common, Android, and i0OS parts.

Checklist

Test Cases Requirements
OWASP Mobile Security OWASP Mobile Application Security
Testing Guide (MSTG) Verification Standard (MASVS)

Figure 3 — Interaction between structural elements of OWASP Mobile Security Project

The level of security of mobile software applications is checked according to the OWASP
MASVS standard (OWASP Mobile Application Security Verification Standard). It is used to both
determine and verify the level of security. The standard was developed to achieve the following:

— the metrics;

— abasis for testing;

— acertification checklist.

OWASP MASVS standard defines two general levels of security and one additional one (for
example, [8], Fig. 4). Each of them has its own set of tests, which is defined and described by the
methodology of MSTG, which determines the methods and tools of testing.

To test within OWASP MASVS, MSTG testing guidelines are used. This document defines
typical scenarios for each stage of testing mobile software vulnerabilities, which are described in
MASVS, and consists of three parts:

— the general part describes vulnerability testing scenarios for mobile software applications
running Android and iOS operating systems.

51

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

— the Android-part describes specific scenarios for testing vulnerabilities of mobile
software applications running the Android operating system.

— the iOS part describes specific scenarios for testing vulnerabilities of mobile software
applications under the control of the iOS operating system.

The app has state-of-the-art security, and is also resilient against specific, clearly defined client-side attacks,
such as tampering, modding, or reverse engineering to extract sensitive code or data. Such an app either
leverages hardware security features or sufficiently strong and verifiable software protection techniques.
MASVS-R is applicable to apps that handle highly sensitive data and may serve as a means of protecting
intellectual property or tamper-proofing an app.

S
e N
To fulfill MASVS-L2, a threat model must exist, and security must be an integral part of the app’s
MASVS-L2 architecture and design. Based on the threat model, the right MASVS-L2 controls should have been selected
and implemented successfully. This level is appropriate for apps that handle highly sensitive data, such as
mobile banking apps.
. J
a N

A mobile app that achieves MASVS-L1 adheres to mobile application security best practices. It fulfills basic
requirements in terms of code quality, handling of sensitive data, and interaction with the mobile
environment. A testing process must be in place to verify the security controls. This level is appropriate for
all mobile applications.

\\ S

MASVS-L1

Figure 4 — Levels of vulnerability testing of mobile software applications according to MASVS

Testing of mobile software applications according to the MASVS standard takes place
according to certain scenarios, which are described and constantly updated in the MSTG guidelines.
According to the results of the tests, the level of ensuring their safety is determined. This gives one
of the probable values, which are: T (test passed), F (test failed) and N/A (not used for mobile
software application).

Each part is characterized by its own stages of testing. However, each stage is determined by
a set of scenarios. Each scenario is performed by the established testing steps. Stages and scenarios
can be performed independently of each other. Therefore, to perform comprehensive testing of
mobile software applications, it is necessary to run all the scenarios with MSTG. In addition, it
should be noted that typical scenarios are executed within the stages, but there are also specific
ones. At the same time, typical scenarios have excellent steps, which depend on the settings of
mobile operating systems and the skills of professionals. This is because each test can be performed
in different ways and with different depth of study. For example, if you need to test the correctness
of the implementation of SSL pinning, in a mobile software application, then this is a separate stage
of testing, which is called Network Security API. Its implementation is possible in several different
scenarios (see, for example [17], Fig. 5).

Fig. 5 shows examples of SSL pinning testing scenarios. They demonstrate that testing can
take different and combined scenarios. First of all, there are steps to test the availability and
functionality of SSL pinning. In addition, the steps that can be used depending on the tasks of
testing, the experience of specialists. This example demonstrates that testing scenarios, their steps
depend on the approach of testing, the level of training and the conditions under which testing is
conducted. Additionally, it should be noted that each step of the testing scenario depends on the
previous one. Therefore, the condition for switching between them is True or False. As a result, the
presence of dependencies between stages (scenarios) allows to formalize the process of testing
vulnerabilities of mobile software applications using dependency graphs [18].

52

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

W
The implementation
of a proxy certificate

f—‘\
v
A proxy launching Is an edit exploit
(BurpSuite, ZAP) to bypass SSL pinning
¢ : K v
Is launching of the Is launching of a tool Is a development of an
tested mobile application to bypass SSL pinning exploit to bypass SSL pinning
Is launching of an
exploit to bypass SSL pinning
J
Yes Na
J,—--...__vafﬁﬁw
Is the connection Is when the connection to the
to the application server application server is not established
C —
M
. _/

!

Is a formation of test results

.fl'\,
Figure 5 — Testing vulnerabilities of mobile software applications running Android operating
system on the example of SSL pinning

A dependency graph is a directed graph that displays the relationship of multiple stages of
vulnerability testing of mobile software applications with an established transitivity ratio (for
example, “the next step is preceded by the previous one”) between them. [18] The dependence

graph is a graph:
G={,T}

where V means many stages of testing vulnerabilities of mobile software applications according to

the OWASP;

R is a transitivity ratio, RcV xV ;

T isatransitive circuitR, T < R.

For example, to test an SSL pinning vulnerability, the set is specified by the following V
elements:
V ={v}, i=11]
R={(V;;V,), (Vo3 V), (Va3 Vo), (V55 V), (Vo Vi) H RSV XV

53

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

v,Rv, - V,Rv, > V;Rv, =>V,Rv; =>V,Rv,;
where V, is the implementation of a proxy certificate;
is a proxy launching (BurpSuite, ZAP);

< <
hS)

w

is launching of the tested mobile application;

=

is launching of a tool to bypass SSL pinning;

S

is a development of an exploit to bypass SSL pinning;

=

is launching of an exploit to bypass SSL pinning;

<

is SSL pinning checking;
is the connection to the application server;

=

V, is when the connection to the application server is not established;
V,, is an edit exploit to bypass SSL pinning;
V;, Is a formation of test results.

Figure 6 — The dependency graph of SSL pinning vulnerability testing steps

Conclusions. Therefore, based on the results of the analysis of existing standards for testing
vulnerabilities of mobile software applications, their focus on the use of OWASP methodology has
been established. This boils down to the implementation of the OWASP Mobile TOP 10, the
OWASP MASVS and the OWASP MSTG guidelines. However, this approach is limited in practice
by focusing on the client’s side of mobile software applications, the subjectivity of the choice of
stages and their sequence in vulnerability testing. To overcome these limitations and in particular to
establish the features of this process, a model based on the dependence graph is proposed. Its use
allows to formalize the process of testing vulnerabilities of mobile software applications. This is
achieved by establishing a relationship between its stages, scenarios, steps. As an example, it is
considered "the execution of the next stage is preceded by the execution of the previous one.” The
obtained results are demonstrated on the example of SSL pinning vulnerability testing.

REFERENCE

[1] International Organization for Standardization. (2011, Nov. 21). ISO/IEC 27034-1,
Information technology. Application Security. [Online]. Avaliable: https://www.iso.org/standard/
44378.html. Accessed on: Dec. 17, 2019.

[2] The President, the Prime Minister and the Ministry of Finance presented the mobile
application “Diya”. [Online]. Avaliable: https://www.kmu.gov.ua/news/prezident-premyer-
ministr-mincifra- prezentuvali-mobilnij-zastosunok-diya. Accessed on: Dec. 17, 2019.

[3] A. Kramer, and B. Legeand, Model-based testing essentials: Guide to the ISTQB Certified
Model-Based Tester Foundation Level. Hoboken, USA: Willey&Sons, Inc., 2016.

54

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Antonishyn, and O. Misnik, “Analysis of testing approaches to Android mobile
application vulnerabilities”, Selected Papers of the XIX International Scientific and Practical
Conference Information Technologies and Security, vol. 2577, CEUR Workshop Proceedings,
2019, pp. 270-280. [Online]. Avaliable: http://ceur-ws.org/VVol-2577/paper22.pdf. Accessed
on: Dec. 17, 2019.

Quick heal annual threat report 2019. [Online]. Avaliable: https://www.google.com/url?sa=
t&rct=Annual-Threat-Report-2019.pdf&usg=A0vVaBxp0TxjyOEXKPWN. Accessed on: Dec. 17,
20109.

International Organization for Standardization. (2016, Okt. 05). ISO/IEC 27034-6,
Information technology. Security technique’s Application Security, first edition. [Online].
Avaliable: https://www.iso.org/standard/60804.html. Accessed on: Dec. 17, 2019.

OWASP Mobile security testing guide (MSTG). [Online]. Avaliable: https://github.com/
OWASP/owasp-mstg/. Accessed on: Dec. 17, 20109.

OWASP Mobile application security verification standard (MASVS). [Online]. Avaliable:
https://github.com/OWASP/owasp-masvs. Accessed on: Dec. 17, 2019.

National Institute of Standards and Technology. (2019, Apr. 19). NIST 800-163, Vetting the
Security of Mobile application. [Online]. Avaliable: https://doi.org/10.6028/NIST.SP.800-
163r1. Accessed on: Dec. 17, 2019.

National Information Assurance Partnership. (2019, Apr. 25). Protection Profile for Mobile
Device Fundamentals, Version 4.0. [Online]. Avaliable: https://www.niap-ccevs.org/MMO/
PP/pp_mdm_v4.0.pdf. Accessed on: Dec. 17, 2019.

S. Zein, N. Salleh, and J. Grundy, “A systematic mapping study of mobile application testing
techniques”, Journal of Systems and Software, vol. 117, pp. 334-356, 2016, doi: 10.1016/j.jss.
2016.03.065.

S. Bojjagani, and V. N. Sastry, “STAMBA: Security Testing for Android Mobile Banking
Apps”, in Advances in Signal Processing and Intelligent Recognition Systems. Advances in
Intelligent Systems and Computing, vol. 425, S. Thampi, S. Bandyopadhyay, S. Krishnan,
KC. Li, S. Mosin, M. Ma, Berlin, Germany: Springer 2016, pp. 671-683, doi: 10.1007/978-3-
319-28658-7_57.

Z. Trabelsi, M. Al Matrooshi, and S. Al Bairaq, “Android based mobile apps for information
security hands-on education”, Education and Information Technologies, vol. 22, iss. 1, pp.
125-144, 2017, doi: 10.1007/s10639-015-9439-8.

S. Roy, D. Chaulagain, and S. Bhusal, “Static Analysis for Security Vetting of Android
Apps”, in From Database to Cyber Security. Lecture Notes in Computer Science, vol 11170,
P. Samarati, I. Ray, I.Ray, Berlin, Germany: Springer, 2018, pp. 375-404, doi: 10.1007/978-3-
030-04834-1_19.

T. Wu, X. Deng, and J. Yan, “Analyses for specific defects in android applications: a survey”.
Frontiers of Computer Science, vol. 13, iss. 6, pp. 1210-1227, 2019, doi: 10.1007/s11704-018-
7008-1.

V.-P. Ranganath, and J. Mitra, “Are free Android app security analysis tools effective in
detecting known vulnerabilities?”, Empirical Software Engineering, vol. 25, iss. 1, pp. 178-
219, 2019, doi: 10.1007/s10664-020-09879-8.

M. Antonishyn, “Four ways to bypass Android SSL. Verification and Certificate Pinning”, in
Proc. VI International Scientific and Practical Conference Transfer of innovative
Technologies, Kyiv, 2020. pp. 96-98.

M. Antonishyn, “The usage of dependency graphs to test the security of mobile software
applications”, in Proc. Computer and information systems, Kharkiv, 2020, p. 44, doi:
10.30837/ 1Vcsitic2020201369.

The article was received 30.03.2020.

55

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

[1]

[2]

[3]
[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

CIIMCOK BUKOPUCTAHMUX /KEPEJI

International Organization for Standardization. (2011, Nov. 21). ISO/IEC 27034-1,
Information technology. Application Security. [Online]. Avaliable: https://www.iso.org/standard/
44378.html. Accessed on: Dec. 17, 2019.

The President, the Prime Minister and the Ministry of Finance presented the mobile
application “Diya”. [Online]. Avaliable: https://www.kmu.gov.ua/news/prezident-premyer-
ministr-mincifra- prezentuvali-mobilnij-zastosunok-diya. Accessed on: Dec. 17, 2019.

A. Kramer, and B. Legeand, Model-based testing essentials: Guide to the ISTQB Certified
Model-Based Tester Foundation Level. Hoboken, USA: Willey&Sons, Inc., 2016.

M. Antonishyn, and O. Misnik, “Analysis of testing approaches to Android mobile
application vulnerabilities”, Selected Papers of the XIX International Scientific and Practical
Conference Information Technologies and Security, vol. 2577, CEUR Workshop Proceedings,
2019, pp. 270-280. [Online]. Avaliable: http://ceur-ws.org/VVol-2577/paper22.pdf. Accessed
on: Dec. 17, 2019.

Quick heal annual threat report 2019. [Online]. Avaliable: https://www.google.com/url?sa=
t&rct=Annual-Threat-Report-2019.pdf&usg=AOvVaBxp0TxjyOEXKPWN. Accessed on: Dec. 17,
20109.

International Organization for Standardization. (2016, Okt. 05). ISO/IEC 27034-6,
Information technology. Security technique’s Application Security, first edition. [Online].
Avaliable: https://www.iso.org/standard/60804.html. Accessed on: Dec. 17, 2019.

OWASP Mobile security testing guide (MSTG). [Online]. Avaliable: https://github.com/
OWASP/owasp-mstg/. Accessed on: Dec. 17, 2019.

OWASP Mobile application security verification standard (MASVS). [Online]. Avaliable:
https://github.com/OWASP/owasp-masvs. Accessed on: Dec. 17, 2019.

National Institute of Standards and Technology. (2019, Apr. 19). NIST 800-163, Vetting the
Security of Mobile application. [Online]. Avaliable: https://doi.org/10.6028/NIST.SP.800-
163rl. Accessed on: Dec. 17, 2019.

National Information Assurance Partnership. (2019, Apr. 25). Protection Profile for Mobile
Device Fundamentals, Version 4.0. [Online]. Avaliable: https://www.niap-ccevs.org/MMO/
PP/pp_mdm_v4.0.pdf. Accessed on: Dec. 17, 2019.

S. Zein, N. Salleh, and J. Grundy, “A systematic mapping study of mobile application testing
techniques”, Journal of Systems and Software, vol. 117, pp. 334-356, 2016, doi: 10.1016/j.jss.
2016.03.065.

S. Bojjagani, and V. N. Sastry, “STAMBA: Security Testing for Android Mobile Banking
Apps”, in Advances in Signal Processing and Intelligent Recognition Systems. Advances in
Intelligent Systems and Computing, vol. 425, S. Thampi, S. Bandyopadhyay, S. Krishnan,
KC. Li, S. Mosin, M. Ma, Berlin, Germany: Springer 2016, pp. 671-683, doi: 10.1007/978-3-
319-28658-7_57.

Z. Trabelsi, M. Al Matrooshi, and S. Al Bairaq, “Android based mobile apps for information
security hands-on education”, Education and Information Technologies, vol. 22, iss. 1, pp.
125-144, 2017, doi: 10.1007/s10639-015-9439-8.

S. Roy, D. Chaulagain, and S. Bhusal, “Static Analysis for Security Vetting of Android
Apps”, in From Database to Cyber Security. Lecture Notes in Computer Science, vol 11170,
P. Samarati, I. Ray, I.Ray, Berlin, Germany: Springer, 2018, pp. 375-404, doi: 10.1007/978-3-
030-04834-1_109.

T. Wu, X. Deng, and J. Yan, “Analyses for specific defects in android applications: a survey”.
Frontiers of Computer Science, vol. 13, iss. 6, pp. 1210-1227, 2019, doi: 10.1007/s11704-018-
7008-1.

V.-P. Ranganath, and J. Mitra, “Are free Android app security analysis tools effective in
detecting known vulnerabilities?”, Empirical Software Engineering, vol. 25, iss. 1, pp. 178-
219, 2019, doi: 10.1007/s10664-020-09879-8.

56

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

[17] M. Antonishyn, “Four ways to bypass Android SSL. Verification and Certificate Pinning”, in
Proc. VI International Scientific and Practical Conference Transfer of innovative
Technologies, Kyiv, 2020. pp. 96-98.

[18] M. Antonishyn, “The usage of dependency graphs to test the security of mobile software
applications”, in Proc. Computer and information systems, Kharkiv, 2020, p. 44, doi:
10.30837/ 1\V/csitic2020201369.

MUXANIJIO AHTOHIILINH

MOJIEJIb TECTYBAHHS YPA3JIMBOCTEM MOBLIbHUX ITPOIPAMHHUX
3ACTOCYHKIB

[IpoanamnizoBaHO MpoIEeC TECTYBaHHS YyPa3IMBOCTEH MOOUIEHUX MPOTPaAMHHUX 3aCTOCYHKIB. Lle
00yMOBJIEHO HEOOXIIHICTIO YHEMOXIIMBJICHHS MOPYIIeHb KOH(DIASHIIHHOCTI, IUTICHOCTI Ta
noctymHocTi iH(popmarii. 30epeKeHICTh JaHUX BIACTUBOCTEH BaXJHMBA SK I OKPEMHX
KOpPHUCTYBayiB, Tak 1 jAepxkaBu 3araioM. OnHaK, Ha MPaKTUIl 34eOUTBIIONO MM HEXTYIOTh 1
NPUAUISIOTh yBary (pyHKIIOHATHbHOMY TECTYyBaHHIO. 1Ol K BiIOMI MiAXOIM A0 TECTyBaHHS
ypa3NUBOCTE MOOUIBHUX MPOrPaMHUX 3aCTOCYHKIB OpPIEHTOBaHI Ha JOCHIIHDKEHHS OKpPEMHUX
acTeKTiB: a0 cepBepHHiA, a00 KITIEHTCHhKHA. BOHOYAac BCTAaHOBIIEHO 3aCTOCOBHICTH MIKHAPOIHUX
CTaHJApTIB TECTyBaHHS YpPa3MUBOCTEH MOOIUTBPHUX TPOTPaMHUX 3aCTOCYHKIB. XapaKTepHOIO
0CcOoONMBICTIO TX HACTaHOB € opieHTOBaHicTh Ha Mmeropoiorito OWASP. Hero Bu3HAuYaroThCs
pPEUTHHT HANOIIBII KPUTUYHUX YPa3NUBOCTEH, CTAaHAAPT 1 CIieHapii TECTYBaHHSA, IHCTPYMEHTANbHI
3aco0u BU3HAYEHHs piBHA 3a0e3meueHHs Oe3neku. Bonu yzaranbHioroThcs HacTaHoBamu OWASP
Mobile TOP 10, OWASP MASVS, OWASP MSTG. VYpaznauBocTi MOOUTBHUX MPOTrpaMHHUX
3aCTOCYHKIB TecTyroThcs y Mexkax OWASP MASVS Bimnmosigao mo OWASP MSTG. [lanumwu
JOKYMEHTaMH BU3HAYAIOTHCS THUIOBI CIEHapii Ui KOXKHOTO €Taly TECTYBaHHS YpPas3JMBOCTEH
MOOUTHHUX MPOTPAMHHUX 3aCTOCYHKIB, siK1 omucadi B MASVS, Ta BUOKpEMITIOIOTHCS TPU YaCTUHHU:
3aranpHa, Android, i0S. 3a pe3ynbraramu MPOBEJCHUX TECTIB BU3HAYAETHCS PIBEHBb 3a0€3MCUCHHS
0e3mekr MOOUIBHUX MPOrpaMHMX 3aCTOCYHKIB, a came: TeCT NMPOWJEHO, TECT HEe MpPOIiIeHO Ta He
BUKOPUCTOBYETHCS I MOOIJIBHOT'O MTPOrPaMHOI0 3aCTOCYHKY. O/IHaK, BUKOPUCTAHHS METOAOJIOT{
OWASP Ha mnpakTuill yCKJIQJHIOETHCS OPIEHTOBAHICTIO Ha KIIEHTCHKY YacTUHY MOOUIBHHUX
MIPOrpaMHUX 3aCTOCYHKIB, CYyO’€KTHBHICTIO OOHMpaHHS eTamiB 1 ixHbOI mocaigoBHOCTI. Jls
3arno0iraHHsg 1UM OOMEXEHHSM po3po0JeHO MOJAENb TECTYBaHHsS YpazJIUBOCTEH MOOUIBHHUX
IIPOrpaMHHUX 3aCTOCYHKIB. JlaHuii mpouec GpopmanizoBaHo BUKOPUCTaHHSIM Ipady 3anexxHocteil. e
JI03BOJIsSIE BU3HAYATH €TalM TECTYBaHHS ypa3IMBOCTEH SK KIIEHTCHKOI, TaK 1 cepBepHOi yacTuH. Jlo
TOro > OOIPDYHTYyBaTH OOMpaHHS €TamiB TECTYyBaHHS, iXHbOI MOCIIJJOBHOCTI Ta BiJINOBITHUX
IHCTpYMEHTAJIbHUX 3ac001B. Take OOTpyHTYBaHHS J0OCSATAE€THCA BCTAHOBIEHHSIM YMOBH 3aJI€KHOCTI
MDK HUMU. Sk mpukian ii GopMyItoBaHHS PO3VISIHYTO ‘“‘BUKOHAHHIO HACTYITHOTO €Tamy Nepeaye
BUKOHAHHS TONepeAHboro”. OTprMaHi pe3ylbTaTH MPOJAEMOHCTPOBAHO HA TPHUKJIIAJ TECTyBaHHS
ypaznmuBocTti SSL pinning.

Ku1ro4oBi c10Ba: MOOUTBHUI TPOrpaMHUIA 3aCTOCYHOK, ypasiuBicTb, MASVS, OWASP, Android,
MOJIETIb TECTYBaHHS ypa3auBOCTE, Tpad 3a1eKHOCTEH.

Antonishyn Mykhailo, postgraduate student, Pukhov institute for modeling in energy
engineering of National academy of sciences of Ukraine, Kyiv, Ukraine.

ORCID: 0000-0002-2665-0066.

E-mail: antonishin.mihail@gmail.com.

AHTOHimMH Muxaiijio BacuiaboBud, actiipant, [HCTUTYT poOiieM MOJIEITIOBaHHS B €HEPTeTHII
iM. I'.€. IlyxoBa HarmionanpHoi akagemii Hayk Ykpainu, KuiB, Ykpaina.

57

