P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

DOI 10.20535/2411-1031.2020.8.1.218004
UDC 004[942::413.4]

MISNIK OLEKSII
APPLICATIONS CONTAINERS SECURITY MODEL

It has been established the purpose of container environments for the development, delivery
and operation of various types of the software applications. The web and mobile applications have
the most widespread use. This is due to the container media’s emphasis on quick loading and
installation. Using this method, you can think of the infrastructure as a code and get the benefits
associated with it. First of foremost, accelerate the development of software applications,
particularly reducing the time between their conception and launch. This is facilitated by the use of
download utilities, the deployment of container environments on container virtualization platforms,
and the management of software applications. Despite this, the necessity to secure the security of
software programs limits the adoption of container systems in practice. This is primarily due to the
use of standard approaches based on intrusion detection systems. Features of container
environments in relation to real settings were overlooked when they were first introduced. Taking
into account the vulnerabilities and dangers of container virtualization platforms, as well as
monitoring the processes of container environments given the unique architecture and input load
flow, it is important to keep in mind that there are only a few of them. A model for assuring the
security of container environments of software programs is proposed to overcome the difficulties of
employing intrusion detection systems. It is based on the idea of using system calls of the host
system on the example of the Linux operating system. This is because they allow the software
applications to interact with the kernel. As a result, users have been identified as the sources of
probable intrusions into container environments. Additionally, there are examples of atypical
commands for analysis during the execution of system calls. Based on the obtained results, it has
been distinguished the stages of intrusion detection and transitions between them. As a result, the
Petri net is used to formalize this process. During the intrusion detection, it has been defined by the
numerous sets of stages, transitions between stages, relations between stages, and transitions.As a
result of the suggested approach, the security aspects of container environments for software
applications are possible to be established.

Keywords: application, container, security, intrusion detection, intrusion detection system,
system call.

Problem statement. Container environments are intended for the creation, delivery, and
operation of numerous types of software programs [1]. The most widespread use of both online and
mobile applications is among these types. This is because the development of container
environments has focused on making them easier to load and install [2], [3]. It is feasible to separate
the infrastructure and, as a result, manage its computer resources by analogy with the program using
this technique. Because of this possibility, infrastructure as code (Infrastructure as Code, 1aC) [4]
has been considered. As a result of container environments, the development of software
applications, notably writing and testing, is also expedited. Therefore, the period between writing
and launching them is shorter. These advantages pertain to the deployment of container
environments on container virtualization platforms, as well as the use of utilities to download and
manage software programs, and, as a consequence, the optimization of server computing resources
[31. [5].

However, despite these benefits, the practical implementation of container environments for
software applications is constrained by the necessity to assure their security. This is primarily due to
the usage of standard approaches based on intrusion detection and prevention systems. Features of
container environments’ application in comparison to physical settings were overlooked when they

© 0. Misnik, 2020
58

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

were first introduced.Among them are taken into account the wvulnerabilities and dangers of
container virtualization platforms, as well as monitoring the processes of the container environment
given its unique design and input load flow. Increase the calculated capabilities of server equipment
as necessary as the load on it grows [6].

Therefore, to overcome the challenges of employing systems to detect and prevent intrusions
while also taking into account the unique characteristics of container environments, it is proposed to
ensure their security based on system calls to the operating system. The primary idea behind this
hypothesis is to keep the functioning container environment visible without modifying its
architecture (for example, the image of the container, preload libraries, program code). System calls
will be logged at the kernel level of the operating system [7]. Therefore, ensuring the security of
container environments of software applications is important.

Analysis of recent research and publications. The analysis of security challenges utilizing
intrusion detection systems is discussed in [8] - [16]. [8] - [9] provide a generalized description of
this process. [10] reveals the necessity of fulfilling the need to identify breaches, particularly in the
financial sector. While [11] - [15] focus on the solution of security issues in container settings for
software applications. These sources, in particular, support the use of intrusion detection systems.
The examination of available sets of rules for detecting possible network assaults [11] is one of the
difficulties that has been solved. The use of intrusion detection systems is reduced to notification of
atypical activity in this instance. This is accompanied by issues of incompatibility of the established
rules. Furthermore, it is possible to add here the usage of the signature method, which necessitates
the creation of distinct rules to identify new invasions. In [12] features of formalization of the
intrusion detection method are discussed. In particular, attention is paid to the collection and
analysis of information at the application level from specific software applications, such as
databases, web servers. Intrusions at other levels, such as channel, network, and transport, may not
be considered as a result. [13], [14] describe real-time processing of massive data streams and
intrusion detection. In particular, there is a demand on the server equipment’s CPUs, especially at
high loads. This limits the applicability of this method to container media safety. [15], [16] describe
architectural aspects of the use of intrusion detection systems, including the requirement for and
drawbacks of decoding traffic for analysis. Among the disadvantages are, for example [16], where
high expenses while decrypting SSL, and sensitivity to packet loss.

Therefore, employing intrusion detection systems to ensure the security of container
environments for software applications is complex due to the enormous number of factors and actual
properties of these environments. For starters, this is owing to the ability to use a lot of operating
systems at the same time. As a result, it is linked to a number of loading options, distinguishing access
to container environments. Furthermore, a wide range of software should be included among the
features. Since these characteristics influence the feasibility and, in particular, the detection of
breaches, they are established by constructing a container security model based on system calls.

The aim of this paper is to determine the security aspects of container environments for
software programs that rely on operating system calls.

The main material research. A container in a network protocol model is an abstraction at
the application level. The packaging of code and related dependencies for downloading software
applications characterizes it. This is accomplished by employing a separate operating system
instance. A container is a series of containers that forms an isolated environment containing
software programs. Fig. 1 [17] shows an example of a representation of its architecture, namely:

1. Physical equipment consists of the server hardware that is used to install and run the
operating system.

2. Host system is an operating system (for example, Linux) that distinguishes between
containers the technical features (for example, RAM) of server equipment on a logical level.

3. Virtualization software is a client-server application that loads the container image and
constructs the container’s environment.

4. Container is a secure environment in which applications run on their own Linux OS.

59

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

Container A Container B Container C

! !

Virtualization software

v v v
v v v

Computer hardware

Figure 1 — Representation of the architecture of the container environment of software applications

We outline the functions of chosen components of the container environment of software
programs, which are challenging to implement using virtualization approaches, particularly [18]:

1. Containers share the primary host system’s physical resources, with a logical allocation
between them (for example, RAM,the hard disk memory).

2. The unification of container creation and start eliminates software faults [19] caused by
changes in container environment setup for normal application deployment.

3. You can emulate the operation of distributed computer systems by loading multiple
containers at the same time.

4. Containers are designed to suit the needs of end users and developers without the need for
cloud-based software deployment. This eliminates the issues that come with different user
environment setups.

From a security standpoint, we will have a look at the first purpose of container environments
on the list, which is the utilization of physical resources on the main host system. Selecting this
option allows you to choose at what point in the interaction between the container and the host
system system calls can be tracked and information about probable intrusions can be obtained. This
is accomplished by making the kernel of the operating system’s fundamental component [20]. This
ensures that software applications have coordinated access to the host system’s resources (for
example: processor time, memory and hardware). The kernel also provides file system and network
protocol support. It is the lowest level of abstraction of access to physical resources and is the main
component of the operating system. At the same time, the kernel gives access to the processes of the
corresponding software programs through a method of process interaction and access to the
operating system’s system calls. This means that any activity in the container is at first represented
by a system call and delivered to the host system’s kernel, and then it launches a process based on
the host system’s kernel policies.

Since the host system’s core interacts directly with the hardware, software applications are
isolated from the architecture’s features. In addition, the kernel performs input/output tasks
(opening, reading, writing, and managing files), as well as the creation and management of
processes, and their synchronization, and interaction. These services are available to the software
applications via system calls (Fig. 1). This explains why system call containers are used to
communicate with the host system. As a result, we can predict that the fewer system calls are
available, the lower are intrusions into container environments [21]. The independence from a range
of software applications is a distinguishing aspect of such connection with the host system’s core.
The reason for this is that system calls define the format of the kernel service requests. The process
initiates a request for a specific kernel procedure that is similar to a typical library function call. The
kernel executes the request on the process’s behalf and returns the required data to it.

In container settings, all software programs will be needed to use system calls (see Fig. 2).
They are made to interact directly with the kernel of the host system, which operates in a privileged
mode and has access to the system tables, external device ports, and the memory manager (Fig. 3).

60

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

User space commands are executed in the kernel of the host system (for example, Linux) through
system calls [22]. So let’s separate the information about system calls, which can be intercepted due
to the standard functionality of the Linux operating system, and try to understand the actions of
software applications in case of intrusions. To do this, let’s select users, each of which can be
considered as a source of probable intrusion and, as a consequence, try to consider their
characteristics:

— a system administrator with remote access. In this case, connecting the system
administrator to the container environment and performing actions in it is a special case. This is due
to the fact that all new installations are due to automated deployment systems. A characteristic
feature of such access is authorization and formalization over time. Therefore, when using system
calls with unusual metadata that will look like malicious data, the administrator has the opportunity
to mark them as a known false positive;

— running of a software application. In this case, it does not need to use system calls with
unusual metadata. However, even if someone uses this action, it is possible to add them to the
whitelist with the mandatory addition of metadata. They will determine that the challenge is not an
invasion;

— the actions that should take place if the host system vulnerability is exploited. In this case,
access is not authorized and the execution of system calls with unusual metadata is considered an
intrusion. This means that by checking the kernel of the host system for the execution of atypical
commands or system calls with atypical metadata, we can make assumptions about the beginning of
the invasion.

Application fuction

Call system library glibc

User space

Kernel space

System table

System call

Figure 2 — The software application’s interaction with the kernel of the host system

Applications
[System Libraries
[System Call Interfaces]
[VFS Sockets
CScheduler
[File System TCP/UDP
[Volume Manager IP .
Virtual Memory
[Block Device Inteface Ethernet
[Device Drivers]

Figure 3 — A list of system calls that can be used to access application functions

61

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

Here are some examples of atypical command execution that should be examined during the
syste call execution on the host system (on the example of the Linux OS) [23]:

— increased privileges through the usage of privileged containers;

— reading or writing of the service directories, such as / etc, / usr / bin, / usr / shin;

— the symbolic links;

— the changes of rights of file access;

— an unexpected network connections;

— the process of creation via execve execution of binary file shells, such as sh, bash, csh, zsh;

— an execution of SSH binary files (such as ssh, scp, sftp) during non-working hours;

— the minimal shadow-utils or password modification.

As a result, when software programs interface with the host system’s core via system calls,
you can influence a wide range of parameters. It is possible to detect indicators of invasion in its
early stages behind them. As a result, when intrusions are identified, the use of system calls is
accompanied by certain states and scenarios, particularly transitions from one condition to another.
System calls, regardless of software applications, follow the same algorithm, implying that they
complete the same steps in both ordinary and abnormal (for example, intrusion-related) operations.
In the latter case, when vulnerabilities are exploited, they result in invasions and, as a result, access
to the host system’s resources. When the characteristics of system calls are examined in depth, it is
possible to characterize the stages and dynamics of software application invasion and detection in
the container environment (Table 1).

Table 1 — Intrusion detection stages based on system calls

. . . Transitions between levels of intrusion
Stages of intrusion detection .
detection
po | Call of the applications to the kernel to | Reading of the event
p1 | The kernel reads the event t1 | The event execution
p2 | The event is detected t> | Recognizing of the kernel-level event
p3 | The event message is sent t3 | Sending the event for its validation
ps | The event has been received for its further | ts | Creating the event messages
validation

ps | An event check request has been made ts | The event type recognition
pe | Checking of the event arguments ts | Performing of the event analysis
p7 | Probable intrusion t; | The report generation
ps | The probable intrusion analysis ts | The report submission
po | Reporting of the analysis results ty | The report formation
p1o | The report transmission tio | The report formation
p11 | The message is generated ti1 | Sending a message
p12 | The message is sent tio | The message processing
p1z | The message is received ti3 | The conclusion formation
p14 | The message is recorded ti4 | The data logging

It is feasible to formalize the process of detection of intrusions into the container
environments of software programs based on the stages and dynamics of the invasions. We employ
the Petri nets [24] as a mathematical tool to accomplish this. This is owing to the fact that they may
be used to describe dynamic discrete systems that are made up of a series of parallel interacting
processes. After that, let’s consider the table. The following is the definition of the Petri net:

G={P,T,F},

where P — is the set of intrusion detection stages, P ={p.},i=114;
T —is the set of transitions between intrusion detection stages, T ={t;},] =114;

62

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

F —is the incidence function, which shows the link between the elements P and T, for
example, Fig. 4.

OO+

Figure 4 — A portion of a picture depicting the Petri net’s detection of incursions into the container
environment of software applications

Conclusions. As a result, the idiosyncrasies of their utilization play a major role in
maintaining the security of container environments for software applications. For example, the
shared use of the host system’s physical resources, the centralized construction and launch of
software applications in container environments, and the simultaneous operation of multiple
containers on a single host system are all examples. They make it more difficult to employ typical
methodologies based on intrusion detection systems to ensure the security of container
environments for software applications. Taking into consideration system calls overcomes this
issue. This helps you to detect invasions while they are still in the planning stages.In the spotlight of
this, it has been provided a methodology for assuring the security of software application container
environments. It is based on the Petri nets mathematical equipment. This is owing to the fact that
they may be used to model dynamic discrete systems. As a result of the suggested model, it will be
feasible to determine the security aspects of software application container environments.

REFERENCE

[1] Best Practices for Running Containers and Kubernetes in Production. [Online]. Available:
https://www.gartner.com/en/documents/3902966/best-practices-for-running-containers-and-
kubernetes- in-. Accessed on: Dec. 14, 2019.

[2] 2019 Container Adoption Survey. [Online]. Available: https://portworx.com/wp-
content/uploads/2019/05/2019-container-adoption-survey.pdf. Accessed on: Dec. 14, 2019.

[3] D. N. Tyazhelnikov, P. A. Tokarev, and I. D. Petrov, “Virtualization of the workspace with
the acceleration of 3D applications on the server side using Docker”, Problems of Modern
Science and Education, no. 14, pp. 21-23, 2017.

[4] Infrastructure as Code. [Online]. Available: https://infrastructure-as-code.com/. Accessed on:
Dec. 14, 20109.

[5] A.R. Sampaio, J. Rubin, Beschastnikh, N. S. Roca, “Improving microservice-based applications
with runtime placement adaptation”, The Journal of Supercomputing, vol. 10, no. 4, pp. 1-30,
2019, doi: 10.1186/s13174-019-0104-0.

[6] A. Milenkoski, K. R. Jayaram, and S. Kounev, “Benchmarking Intrusion Detection Systems
with Adaptive Provisioning of Virtualized Resources”, in Self-Aware Computing Systems,
pp. 633-657, 2017, doi: 10.1007/978-3-319-47474-8_22.

[7]1 L Rosenberg, and E. Gudes, “Evading System-Calls Based Intrusion Detection Systems.
Network and System Security”, in Proc. International Conference on Network and System
Security, Taipei, Taiwan, 2016, pp. 200-216, doi: 10.1007/978-3-319-46298-1_14.

[8] National Institute of Standards and Technology. (2007, Febr. 20). NIST SP 800-94, Guide to
Intrusion Detection and Prevention Systems. [Online]. Available: https://csrc.nist.gov/
publications/detail/sp/800-94/final. Accessed on: Dec 10, 2019.

[9] International Organization for Standardization. (2015, Febr. 11). ISO/IEC 27039, Information
technology. Security techniques. Selection, deployment and operation of intrusion detection
and prevention systems. [Online]. Awvailable: https://www.iso.org/standard/56889.html.
Accessed on: Dec 10, 2019.

63

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

[10] PCI Security Standards Council. (2018, May 01). Payment Card Industry Data Security
Standard. [Online]. Available: https://ru.pcisecuritystandards.org/_onelink_/pcisecurity/
en2ru/ minisite/en/docs/PC1_DSS v3 2 RU-RU_Final.pdf. Accessed on: Dec 10, 2019.

[11] M. Aldwairi, A. M. Abu-Dalo, and M. Jarrah, “Pattern matching of signature-based 1DS using
Myers algorithm under MapReduce framework”, EURASIP Journal on Information Security,
2017:9, 2017, doi: 10.1186/s13635-017-0062-7.

[12] V. Mishra, V. K. Vijay, and S. Tazi, “Intrusion Detection System with Snort in Cloud
Computing: Advanced IDS”, in Proc. of International Conference on ICT for Sustainable
Development, Washington, USA, 2016, pp.457-465.

[13] A. Belova, and D. Borodavkin, “Comparative analysis of intrusion detection systems”, Actual
problems of aviation and astronautics, Siberian Federal University, vol. 1, no. 12, pp. 742-
744, 2016.

[14] W. Park, and S. Ahn, “Performance Comparison and Detection Analysis in Snort and Suricata
Environment”, Wireless Pers Commun, no. 94, pp. 241-252, 2016, doi: 10.1007/s11277-016-
3209-9.

[15] M. Sourour, B. Adel, and A. Tarek, “Network Security Alerts Management Architecture for
Signature-Based Intrusions Detection Systems within a NAT Environment”, Journal of
Network and Systems Management, no. 19, pp. 472-495, 2011, doi: 10.1007/s10922-010-9195-4.

[16] Snort and SSL/TLS Inspection, 2017. [Online]. Available: https://www.sans.org/reading-
room/whitepapers/detection/snort-ssl-tls-inspection-37735. Accessed on: Dec 10, 2019.

[17] Docker overview, 2020. [Online]. Available: https://docs.docker.com/get-started/overview.
Accessed on: Dec 10, 2019.

[18] A. Mouat, Using Docker, Using Docker: Developing and Deploying Software with
Containers. Newton, USA: O’Reilly Media, 2015.

[19] H. Abbes, T. Louati, and C. Cerin, “Dynamic replication factor model for Linux containers-
based cloud systems”, Journal of Supercomputing, no. 76, pp 7219-7241, 2020, doi:
10.1007/s11227-020-03158-5.

[20] R. Baclit, C. Sicam, P. Membrey, and J. Newbigin, “The Linux Kernel”, in Foundations of
CentOS Linux. California, USA: Apress, 2009, pp. 415-434.

[21] M. Bagherzadeh, N. Kahani, and C.P. Bezemer, “Analyzing a decade of Linux system calls”,
Empirical Software Engineering, no. 23, pp. 1519-1551, 2018, doi: 10.1007/s10664-017-9551-z.

[22] Using eBPF in Kubernetes. [Online]. Available: https://kubernetes.io/blog/2017/12/using-
ebpf-in-kubernetes. Accessed on: Dec 10, 2019.

[23] Linux System Call Table. [Online]. Available: https://thevivekpandey.github.io/posts/2017-
09-25-linux-system-calls.html. Accessed on: Dec 10, 2019.

[24] S. Adameit, “Modelling Distributed Network Security in a Petri Net- and Agent-Based
Approach”, in Lecture Notes in Computer Science, vol. 6251. Berlin, Germany: Springer,
2010, pp. 209-220, doi: 10.1007/978-3-642-16178-0_20.

The article was received 20.02.2020.

CIIUCOK BUKOPUCTAHUX TKEPEJI

[1] Best Practices for Running Containers and Kubernetes in Production. [Online]. Available:
https://www.gartner.com/en/documents/3902966/best-practices-for-running-containers-and-
kubernetes- in-. Accessed on: Dec. 14, 20109.

[2] 2019 Container Adoption Survey. [Online]. Available: https://portworx.com/wp-
content/uploads/2019/05/2019-container-adoption-survey.pdf. Accessed on: Dec. 14, 2019.

[81 A.H Tsxenpuukos, II. A. TokapeB, u W.]JI. Iletpo, “Bupryamuzaims padbodero
MPOCTPAHCTBA ¢ ycKopeHueM 3d-npuiioKeHUH Ha CTOpOHE cepBepa mpu momornu Docker”,
IIpobnemsr cospemennou nayku u oopasosarnus, Ne 14, c. 21-23, 2017.

64

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

[4] Infrastructure as Code. [Online]. Available: https://infrastructure-as-code.com/. Accessed on:
Dec. 14, 2019.

[5] A.R.Sampaio, J. Rubin, Beschastnikh, N. S. Roca, “Improving microservice-based applications
with runtime placement adaptation”, The Journal of Supercomputing, vol. 10, no. 4, pp. 1-30,
2019, doi: 10.1186/s13174-019-0104-0.

[6] A. Milenkoski, K. R. Jayaram, and S. Kounev, “Benchmarking Intrusion Detection Systems
with Adaptive Provisioning of Virtualized Resources”, in Self-Aware Computing Systems,
pp. 633-657, 2017, doi: 10.1007/978-3-319-47474-8_22.

[7] I Rosenberg, and E. Gudes, “Evading System-Calls Based Intrusion Detection Systems.
Network and System Security”, in Proc. International Conference on Network and System
Security, Taipei, Taiwan, 2016, pp. 200-216, doi: 10.1007/978-3-319-46298-1_14.

[8] National Institute of Standards and Technology. (2007, Febr. 20). NIST SP 800-94, Guide to
Intrusion Detection and Prevention Systems. [Online]. Available: https://csrc.nist.gov/
publications/detail/sp/800-94/final. Accessed on: Dec 10, 2019.

[9] International Organization for Standardization. (2015, Febr. 11). ISO/IEC 27039, Information
technology. Security techniques. Selection, deployment and operation of intrusion detection
and prevention systems. [Online]. Available: https://www.iso.org/standard/56889.html.
Accessed on: Dec 10, 2019.

[10] PCI Security Standards Council. (2018, May 01). Payment Card Industry Data Security
Standard. [Online]. Available: https://ru.pcisecuritystandards.org/_onelink_/pcisecurity/
en2ru/ minisite/en/docs/PC1_DSS v3 2 RU-RU_Final.pdf. Accessed on: Dec 10, 2019.

[11] M. Aldwairi, A. M. Abu-Dalo, and M. Jarrah, “Pattern matching of signature-based 1DS using
Myers algorithm under MapReduce framework”, EURASIP Journal on Information Security,
2017:9, 2017, doi: 10.1186/s13635-017-0062-7.

[12] V. Mishra, V. K. Vijay, and S. Tazi, “Intrusion Detection System with Snort in Cloud
Computing: Advanced IDS”, in Proc. of International Conference on ICT for Sustainable
Development, Washington, USA, 2016, pp.457-465.

[13] A. Belova, and D. Borodavkin, “Comparative analysis of intrusion detection systems”, Actual
problems of aviation and astronautics, Siberian Federal University, vol. 1, no. 12, pp. 742-
744, 2016.

[14] W. Park, and S. Ahn, “Performance Comparison and Detection Analysis in Snort and Suricata
Environment”, Wireless Pers Commun, no. 94, pp. 241-252, 2016, doi: 10.1007/s11277-016-
3209-9.

[15] M. Sourour, B. Adel, and A. Tarek, “Network Security Alerts Management Architecture for
Signature-Based Intrusions Detection Systems within a NAT Environment”, Journal of
Network and Systems Management, no. 19, pp. 472-495, 2011, doi: 10.1007/s10922-010-9195-4.

[16] Snort and SSL/TLS Inspection, 2017. [Online]. Available: https://www.sans.org/reading-
room/whitepapers/detection/snort-ssl-tls-inspection-37735. Accessed on: Dec 10, 2019.

[17] Docker overview, 2020. [Online]. Available: https://docs.docker.com/get-started/overview.
Accessed on: Dec 10, 2019.

[18] A. Mouat, Using Docker, Using Docker: Developing and Deploying Software with
Containers. Newton, USA: O’Reilly Media, 2015.

[19] H. Abbes, T. Louati, and C. Cerin, “Dynamic replication factor model for Linux containers-
based cloud systems”, Journal of Supercomputing, no. 76, pp 7219-7241, 2020, doi:
10.1007/s11227-020-03158-5.

[20] R. Baclit, C. Sicam, P. Membrey, and J. Newbigin, “The Linux Kernel”, in Foundations of
CentOS Linux. California, USA: Apress, 2009, pp. 415-434.

[21] M. Bagherzadeh, N. Kahani, and C.P. Bezemer, “Analyzing a decade of Linux system calls”,
Empirical Software Engineering, no. 23, pp. 1519-1551, 2018, doi: 10.1007/s10664-017-9551-z.

[22] Using eBPF in Kubernetes. [Online]. Available: https://kubernetes.io/blog/2017/12/using-
ebpf-in-kubernetes. Accessed on: Dec 10, 20109.

65

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

[23] Linux System Call Table. [Online]. Available: https://thevivekpandey.github.io/posts/2017-
09-25-linux-system-calls.html. Accessed on: Dec 10, 2019.

[24] S. Adameit, “Modelling Distributed Network Security in a Petri Net- and Agent-Based
Approach”, in Lecture Notes in Computer Science, vol. 6251. Berlin, Germany: Springer,
2010, pp. 209-220, doi: 10.1007/978-3-642-16178-0_20.

OJIEKCIA MICHIK

MOJEJb 3ABE3NEYEHHSA BE3NEKA KOHTEMHEPHUX CEPEJIOBMII]
ITPOI'PAMHUX 3ACTOCYHKIB

BcraHOBI€HO NMPU3HAYEHICTh KOHTEHHEPHUX CEpeAOBUIL I pPO3pOOJCHHS, AOCTABISHHS 1
eKCIUTyaTyBaHHS MPOTPaMHHUX 3aCTOCYHKIB pi3HUX TumiB. Cepen MUX TUMIB HAHOLIBII MOMIUpPEHE
BUKOPUCTaHHS SK BeO, Tak 1 MOOUIBHMX 3acTOCyHKIB. lLle 0O0yMOBIEHO Opi€EHTOBaHICTIO
KOHTEWHEPHUX CEPEIOBHII HA iX OUIBII MIBHJKE 3aBaHTAKEHHS Ta BCTAHOBJICHHS. BUKOpUCTaHHS
TAKOro MiIXOAY A03BOJISE€ PO3MIAAaTH 1HPPACTPYKTYpy sSIK KOJX 1 OTPUMYBATH IOB’Si3aHI 3 HEIO
nepeBarn. Hacammepen NpUIIBUAIIMTHA PO3pOOJIEHHS NPOTPAMHUX 3aCTOCYHKIB, 30KpeMa,
3MEHIIUTH Yac MDK IX HalMCaHHAM 1 3amycKaHHsAM. LlboMy crpusie po3ropTaHHs KOHTEHHEPHHX
cepeioBUIN Ha TuiarhopMax KOHTEHHEpHOI BipTyasiaiii, BAKOPUCTAHHS YTHJIT 3aBaHTAXCHHS 1
KEepyBaHHS IpOrpaMHMMHU 3acTocyHkamu. OpHak, He3BaKal4M Ha 1€ BUKOPUCTAHHS
KOHTEWHEPHUX CEPeJOBHUIN IMPOTPAMHUX 3aCTOCYHKIB Ha MPAKTHI OOMEXKYETHCS HEOOXIITHICTIO
3abe3neuyBatu ix Oesneky. Hacammepen 1e moB’s3aHO 3 BUKOPUCTAHHSAM THUIIOBUX MIAXOJIB Ha
OCHOBI CHCTEM BHWSBICHHS BTOpPrHeHb. [IpM iX BHIpPOBAaIKEHHI 10332 YyBAarow 3alUIIAIOTHCS
0COOJIMBOCTI BUKOPHUCTaHHS KOHTEWHEPHUX CepeAoBUIl NOpiBHAHO 3 (izmunumu. Cepeln HHUX
BHOKPEMITIOIOTHCS BpaxXyBaHHSI ypa3iMBOCTEH 1 3arpo3 IuiaTdopM KOHTEHHEPHOI BipTyamizaii,
NepEeBIPSIHHS MPOLIECIB KOHTEHHEPHUX CEPEIOBHUII] 3 OISy Ha OCOOIMBOCTI iXHBOI apXiTEeKTypH Ta
BXI/IHOTO TOTOKY HaBaHTa)XEHHs. J{JIs1 TIOZOMaHHS CKIIaJHOMIIB BUKOPUCTAHHS CHCTEM BHUSBICHHS
BTOPTHEHb 3allpOIIOHOBAaHO MOJEib 3a0e3leueHHs Oe3MeKH KOHTEHHEpHUX CepelOBHIL
MPOTpaMHUX 3aCTOCYHKIB. 3a 1i OCHOBY B3SITO 17€f0 BUKOPHUCTAHHS CHUCTEMHHX BHKJIHMKIB XOCT
CHCTeMH Ha TpHKIaal onepamiiHoi cucremu Linux. Ile moB’s3aHo 3 THM, W0 4Yepe3 HHX
B1JI0YBA€ThCS B3a€EMOJISl NMPOrpaMHUX 3aCTOCYHKIB 3 siipoM. ToMy BHIUIEHO KOPUCTYBauiB SIK
JDKepen BIPOTIIHUX BTOPTHEHb Y KOHTEWHEpHI cepenoBuina. KpiM TOro HaBeieHO HpUKIAAU
HETHITIOBUX KOMAaHJ]| Ul aHaJi3yBaHHS NPOTSITOM BUKOHAHHS CHCTEMHHMX BHIKJIMKiIB. Ha OCHOBI
OTPHMAHUX PE3Y/IbTATIB BUOKPEMICHO €TAllM BUSBJICHHS BTOPTHEHb 1 MEPEXOIM MDK HHMH. Sk
Hacmigok, (gopManizoBaHo naHuii mpouec Mmepexero Ilerpi. Ii BU3HAaueHO CYKyNHICTIO MHOXHH
eTariB, MMEePEeXo/iB MK eTaraMH, BiAHOIIEHb MK eTalaMH Ta MepexoJaMu MPOTSIroM BHSBIEHHS
BTOprHeHb. TOXX Ha OCHOBI 3alpOMOHOBAaHOI MOJENi CTajl0 MOMIJIMBHM BCTaHOBJICHHS
oco0aMBOCTeH 3a0e3neueHHs 0e3MeKH KOHTEHHEPHUX CepeIOBHIL POTPaMHUX 3aCTOCYHKIB.

Kuo4uoBi cjioBa: mporpaMHHil 3aCTOCYHOK, KOHTEHHEPHE CepeIoBUIIE, Oe3TeKa, BUSIBICHHS
BTOPTHEHB, CUCTEMa BUSIBJICHHS BTOPTHEHb, CHCTEMH1 BUKJIMKH.

Misnik Oleksii, postgraduate student, Pukhov institute for modeling in energy engineering of
National academy of sciences of Ukraine, Kyiv, Ukraine.

ORCID: 0000-0002-4654-9125.

E-mail: oleksii.misnik@gmail.com.

Micnik Ouekciii IropeBuu, acmipant, [HCTHUTYT mpoOieM MOJIENIOBaHHA B EHEPreTHIl
iM. I'.€. TlyxoBa HarmionanpHoi akagemii Hayk Ykpainu, Kui, Ykpaina.

66

