
P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

© O. Misnik, 2020

58

DOI 10.20535/2411-1031.2020.8.1.218004

UDC 004[942::413.4]

MISNIK OLEKSII

APPLICATIONS CONTAINERS SECURITY MODEL

It has been established the purpose of container environments for the development, delivery

and operation of various types of the software applications. The web and mobile applications have

the most widespread use. This is due to the container media’s emphasis on quick loading and

installation. Using this method, you can think of the infrastructure as a code and get the benefits

associated with it. First of foremost, accelerate the development of software applications,

particularly reducing the time between their conception and launch. This is facilitated by the use of

download utilities, the deployment of container environments on container virtualization platforms,

and the management of software applications. Despite this, the necessity to secure the security of

software programs limits the adoption of container systems in practice. This is primarily due to the

use of standard approaches based on intrusion detection systems. Features of container

environments in relation to real settings were overlooked when they were first introduced. Taking

into account the vulnerabilities and dangers of container virtualization platforms, as well as

monitoring the processes of container environments given the unique architecture and input load

flow, it is important to keep in mind that there are only a few of them. A model for assuring the

security of container environments of software programs is proposed to overcome the difficulties of

employing intrusion detection systems. It is based on the idea of using system calls of the host

system on the example of the Linux operating system. This is because they allow the software

applications to interact with the kernel. As a result, users have been identified as the sources of

probable intrusions into container environments. Additionally, there are examples of atypical

commands for analysis during the execution of system calls. Based on the obtained results, it has

been distinguished the stages of intrusion detection and transitions between them. As a result, the

Petri net is used to formalize this process. During the intrusion detection, it has been defined by the

numerous sets of stages, transitions between stages, relations between stages, and transitions.As a

result of the suggested approach, the security aspects of container environments for software

applications are possible to be established.

Keywords: application, container, security, intrusion detection, intrusion detection system,

system call.

Problem statement. Container environments are intended for the creation, delivery, and

operation of numerous types of software programs [1]. The most widespread use of both online and

mobile applications is among these types. This is because the development of container

environments has focused on making them easier to load and install [2], [3]. It is feasible to separate

the infrastructure and, as a result, manage its computer resources by analogy with the program using

this technique. Because of this possibility, infrastructure as code (Infrastructure as Code, IaC) [4]

has been considered. As a result of container environments, the development of software

applications, notably writing and testing, is also expedited. Therefore, the period between writing

and launching them is shorter. These advantages pertain to the deployment of container

environments on container virtualization platforms, as well as the use of utilities to download and

manage software programs, and, as a consequence, the optimization of server computing resources

[3], [5].

However, despite these benefits, the practical implementation of container environments for

software applications is constrained by the necessity to assure their security. This is primarily due to

the usage of standard approaches based on intrusion detection and prevention systems. Features of

container environments’ application in comparison to physical settings were overlooked when they

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

59

were first introduced.Among them are taken into account the vulnerabilities and dangers of

container virtualization platforms, as well as monitoring the processes of the container environment

given its unique design and input load flow. Increase the calculated capabilities of server equipment

as necessary as the load on it grows [6].

Therefore, to overcome the challenges of employing systems to detect and prevent intrusions

while also taking into account the unique characteristics of container environments, it is proposed to

ensure their security based on system calls to the operating system. The primary idea behind this

hypothesis is to keep the functioning container environment visible without modifying its

architecture (for example, the image of the container, preload libraries, program code). System calls

will be logged at the kernel level of the operating system [7]. Therefore, ensuring the security of

container environments of software applications is important.

Analysis of recent research and publications. The analysis of security challenges utilizing

intrusion detection systems is discussed in [8] - [16]. [8] - [9] provide a generalized description of

this process. [10] reveals the necessity of fulfilling the need to identify breaches, particularly in the

financial sector. While [11] - [15] focus on the solution of security issues in container settings for

software applications. These sources, in particular, support the use of intrusion detection systems.

The examination of available sets of rules for detecting possible network assaults [11] is one of the

difficulties that has been solved. The use of intrusion detection systems is reduced to notification of

atypical activity in this instance. This is accompanied by issues of incompatibility of the established

rules. Furthermore, it is possible to add here the usage of the signature method, which necessitates

the creation of distinct rules to identify new invasions. In [12] features of formalization of the

intrusion detection method are discussed. In particular, attention is paid to the collection and

analysis of information at the application level from specific software applications, such as

databases, web servers. Intrusions at other levels, such as channel, network, and transport, may not

be considered as a result. [13], [14] describe real-time processing of massive data streams and

intrusion detection. In particular, there is a demand on the server equipment’s CPUs, especially at

high loads. This limits the applicability of this method to container media safety. [15], [16] describe

architectural aspects of the use of intrusion detection systems, including the requirement for and

drawbacks of decoding traffic for analysis. Among the disadvantages are, for example [16], where

high expenses while decrypting SSL, and sensitivity to packet loss.

Therefore, employing intrusion detection systems to ensure the security of container

environments for software applications is complex due to the enormous number of factors and actual

properties of these environments. For starters, this is owing to the ability to use a lot of operating

systems at the same time. As a result, it is linked to a number of loading options, distinguishing access

to container environments. Furthermore, a wide range of software should be included among the

features. Since these characteristics influence the feasibility and, in particular, the detection of

breaches, they are established by constructing a container security model based on system calls.

The aim of this paper is to determine the security aspects of container environments for

software programs that rely on operating system calls.

The main material research. A container in a network protocol model is an abstraction at

the application level. The packaging of code and related dependencies for downloading software

applications characterizes it. This is accomplished by employing a separate operating system

instance. A container is a series of containers that forms an isolated environment containing

software programs. Fig. 1 [17] shows an example of a representation of its architecture, namely:

1. Physical equipment consists of the server hardware that is used to install and run the

operating system.

2. Host system is an operating system (for example, Linux) that distinguishes between

containers the technical features (for example, RAM) of server equipment on a logical level.

3. Virtualization software is a client-server application that loads the container image and

constructs the container’s environment.

4. Container is a secure environment in which applications run on their own Linux OS.

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

60

Figure 1 – Representation of the architecture of the container environment of software applications

We outline the functions of chosen components of the container environment of software

programs, which are challenging to implement using virtualization approaches, particularly [18]:

1. Containers share the primary host system’s physical resources, with a logical allocation

between them (for example, RAM,the hard disk memory).

2. The unification of container creation and start eliminates software faults [19] caused by

changes in container environment setup for normal application deployment.

3. You can emulate the operation of distributed computer systems by loading multiple

containers at the same time.

4. Containers are designed to suit the needs of end users and developers without the need for

cloud-based software deployment. This eliminates the issues that come with different user

environment setups.

From a security standpoint, we will have a look at the first purpose of container environments

on the list, which is the utilization of physical resources on the main host system. Selecting this

option allows you to choose at what point in the interaction between the container and the host

system system calls can be tracked and information about probable intrusions can be obtained. This

is accomplished by making the kernel of the operating system’s fundamental component [20]. This

ensures that software applications have coordinated access to the host system’s resources (for

example: processor time, memory and hardware). The kernel also provides file system and network

protocol support. It is the lowest level of abstraction of access to physical resources and is the main

component of the operating system. At the same time, the kernel gives access to the processes of the

corresponding software programs through a method of process interaction and access to the

operating system’s system calls. This means that any activity in the container is at first represented

by a system call and delivered to the host system’s kernel, and then it launches a process based on

the host system’s kernel policies.

Since the host system’s core interacts directly with the hardware, software applications are

isolated from the architecture’s features. In addition, the kernel performs input/output tasks

(opening, reading, writing, and managing files), as well as the creation and management of

processes, and their synchronization, and interaction. These services are available to the software

applications via system calls (Fig. 1). This explains why system call containers are used to

communicate with the host system. As a result, we can predict that the fewer system calls are

available, the lower are intrusions into container environments [21]. The independence from a range

of software applications is a distinguishing aspect of such connection with the host system’s core.

The reason for this is that system calls define the format of the kernel service requests. The process

initiates a request for a specific kernel procedure that is similar to a typical library function call. The

kernel executes the request on the process’s behalf and returns the required data to it.

In container settings, all software programs will be needed to use system calls (see Fig. 2).

They are made to interact directly with the kernel of the host system, which operates in a privileged

mode and has access to the system tables, external device ports, and the memory manager (Fig. 3).

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

61

User space commands are executed in the kernel of the host system (for example, Linux) through

system calls [22]. So let’s separate the information about system calls, which can be intercepted due

to the standard functionality of the Linux operating system, and try to understand the actions of

software applications in case of intrusions. To do this, let’s select users, each of which can be

considered as a source of probable intrusion and, as a consequence, try to consider their

characteristics:

 a system administrator with remote access. In this case, connecting the system

administrator to the container environment and performing actions in it is a special case. This is due

to the fact that all new installations are due to automated deployment systems. A characteristic

feature of such access is authorization and formalization over time. Therefore, when using system

calls with unusual metadata that will look like malicious data, the administrator has the opportunity

to mark them as a known false positive;

 running of a software application. In this case, it does not need to use system calls with

unusual metadata. However, even if someone uses this action, it is possible to add them to the

whitelist with the mandatory addition of metadata. They will determine that the challenge is not an

invasion;

 the actions that should take place if the host system vulnerability is exploited. In this case,

access is not authorized and the execution of system calls with unusual metadata is considered an

intrusion. This means that by checking the kernel of the host system for the execution of atypical

commands or system calls with atypical metadata, we can make assumptions about the beginning of

the invasion.

Figure 2 – The software application’s interaction with the kernel of the host system

Figure 3 – A list of system calls that can be used to access application functions

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

62

Here are some examples of atypical command execution that should be examined during the

syste call execution on the host system (on the example of the Linux OS) [23]:

 increased privileges through the usage of privileged containers;

 reading or writing of the service directories, such as / etc, / usr / bin, / usr / sbin;

 the symbolic links;

 the changes of rights of file access;

 an unexpected network connections;

 the process of creation via execve execution of binary file shells, such as sh, bash, csh, zsh;

 an execution of SSH binary files (such as ssh, scp, sftp) during non-working hours;

 the minimal shadow-utils or password modification.

As a result, when software programs interface with the host system’s core via system calls,

you can influence a wide range of parameters. It is possible to detect indicators of invasion in its

early stages behind them. As a result, when intrusions are identified, the use of system calls is

accompanied by certain states and scenarios, particularly transitions from one condition to another.

System calls, regardless of software applications, follow the same algorithm, implying that they

complete the same steps in both ordinary and abnormal (for example, intrusion-related) operations.

In the latter case, when vulnerabilities are exploited, they result in invasions and, as a result, access

to the host system’s resources. When the characteristics of system calls are examined in depth, it is

possible to characterize the stages and dynamics of software application invasion and detection in

the container environment (Table 1).

Table 1 – Intrusion detection stages based on system calls

Stages of intrusion detection
Transitions between levels of intrusion

detection

p0 Call of the applications to the kernel t0 Reading of the event

p1 The kernel reads the event t1 The event execution

p2 The event is detected t2 Recognizing of the kernel-level event

p3 The event message is sent t3 Sending the event for its validation

p4 The event has been received for its further

validation

t4 Creating the event messages

p5 An event check request has been made t5 The event type recognition

p6 Checking of the event arguments t6 Performing of the event analysis

p7 Probable intrusion t7 The report generation

p8 The probable intrusion analysis t8 The report submission

p9 Reporting of the analysis results t9 The report formation

p10 The report transmission t10 The report formation

p11 The message is generated t11 Sending a message

p12 The message is sent t12 The message processing

p13 The message is received t13 The conclusion formation

p14 The message is recorded t14 The data logging

It is feasible to formalize the process of detection of intrusions into the container

environments of software programs based on the stages and dynamics of the invasions. We employ

the Petri nets [24] as a mathematical tool to accomplish this. This is owing to the fact that they may

be used to describe dynamic discrete systems that are made up of a series of parallel interacting

processes. After that, let’s consider the table. The following is the definition of the Petri net:

{ , , },G P T F

where P – is the set of intrusion detection stages, { }, 1,14iP p i  ;

T – is the set of transitions between intrusion detection stages, { }, 1,14jT t j  ;

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

63

F – is the incidence function, which shows the link between the elements P and T , for

example, Fig. 4.

Figure 4 – A portion of a picture depicting the Petri net’s detection of incursions into the container

environment of software applications

Conclusions. As a result, the idiosyncrasies of their utilization play a major role in

maintaining the security of container environments for software applications. For example, the

shared use of the host system’s physical resources, the centralized construction and launch of

software applications in container environments, and the simultaneous operation of multiple

containers on a single host system are all examples. They make it more difficult to employ typical

methodologies based on intrusion detection systems to ensure the security of container

environments for software applications. Taking into consideration system calls overcomes this

issue. This helps you to detect invasions while they are still in the planning stages.In the spotlight of

this, it has been provided a methodology for assuring the security of software application container

environments. It is based on the Petri nets mathematical equipment. This is owing to the fact that

they may be used to model dynamic discrete systems. As a result of the suggested model, it will be

feasible to determine the security aspects of software application container environments.

REFERENCE

[1] Best Practices for Running Containers and Kubernetes in Production. [Online]. Available:

https://www.gartner.com/en/documents/3902966/best-practices-for-running-containers-and-

kubernetes- in-. Accessed on: Dec. 14, 2019.

[2] 2019 Container Adoption Survey. [Online]. Available: https://portworx.com/wp-

content/uploads/2019/05/2019-container-adoption-survey.pdf. Accessed on: Dec. 14, 2019.

[3] D. N. Tyazhelnikov, P. A. Tokarev, and I. D. Petrov, “Virtualization of the workspace with

the acceleration of 3D applications on the server side using Docker”, Problems of Modern

Science and Education, no. 14, pp. 21-23, 2017.

[4] Infrastructure as Code. [Оnline]. Аvailable: https://infrastructure-as-code.com/. Accessed on:

Dec. 14, 2019.

[5] A. R. Sampaio, J. Rubin, Beschastnikh, N. S. Roca, “Improving microservice-based applications

with runtime placement adaptation”, The Journal of Supercomputing, vol. 10, no. 4, pp. 1-30,

2019, doi: 10.1186/s13174-019-0104-0.

[6] A. Milenkoski, K. R. Jayaram, and S. Kounev, “Benchmarking Intrusion Detection Systems

with Adaptive Provisioning of Virtualized Resources”, in Self-Aware Computing Systems,

pp. 633-657, 2017, doi: 10.1007/978-3-319-47474-8_22.

[7] I. Rosenberg, and E. Gudes, “Evading System-Calls Based Intrusion Detection Systems.

Network and System Security”, in Proc. International Conference on Network and System

Security, Taipei, Taiwan, 2016, pp. 200-216, doi: 10.1007/978-3-319-46298-1_14.

[8] National Institute of Standards and Technology. (2007, Febr. 20). NIST SP 800-94, Guide to

Intrusion Detection and Prevention Systems. [Online]. Available: https://csrc.nist.gov/

publications/detail/sp/800-94/final. Accessed on: Dec 10, 2019.

[9] International Organization for Standardization. (2015, Febr. 11). ISO/IEC 27039, Information

technology. Security techniques. Selection, deployment and operation of intrusion detection

and prevention systems. [Online]. Available: https://www.iso.org/standard/56889.html.

Accessed on: Dec 10, 2019.

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

64

[10] PCI Security Standards Council. (2018, May 01). Payment Card Industry Data Security

Standard. [Online]. Available: https://ru.pcisecuritystandards.org/_onelink_/pcisecurity/

en2ru/ minisite/en/docs/PCI_DSS_v3_2_RU-RU_Final.pdf. Accessed on: Dec 10, 2019.

[11] M. Aldwairi, A. M. Abu-Dalo, and M. Jarrah, “Pattern matching of signature-based IDS using

Myers algorithm under MapReduce framework”, EURASIP Journal on Information Security,

2017:9, 2017, doi: 10.1186/s13635-017-0062-7.

[12] V. Mishra, V. K. Vijay, and S. Tazi, “Intrusion Detection System with Snort in Cloud

Computing: Advanced IDS”, in Proc. of International Conference on ICT for Sustainable

Development, Washington, USA, 2016, pp.457-465.

[13] A. Belova, and D. Borodavkin, “Comparative analysis of intrusion detection systems”, Actual

problems of aviation and astronautics, Siberian Federal University, vol. 1, no. 12, pp. 742-

744, 2016.

[14] W. Park, and S. Ahn, “Performance Comparison and Detection Analysis in Snort and Suricata

Environment”, Wireless Pers Commun, no. 94, pp. 241-252, 2016, doi: 10.1007/s11277-016-

3209-9.

[15] M. Sourour, B. Adel, and A. Tarek, “Network Security Alerts Management Architecture for

Signature-Based Intrusions Detection Systems within a NAT Environment”, Journal of

Network and Systems Management, no. 19, pp. 472-495, 2011, doi: 10.1007/s10922-010-9195-4.

[16] Snort and SSL/TLS Inspection, 2017. [Online]. Available: https://www.sans.org/reading-

room/whitepapers/detection/snort-ssl-tls-inspection-37735. Accessed on: Dec 10, 2019.

[17] Docker overview, 2020. [Online]. Available: https://docs.docker.com/get-started/overview.

Accessed on: Dec 10, 2019.

[18] A. Mouat, Using Docker, Using Docker: Developing and Deploying Software with

Containers. Newton, USA: O’Reilly Media, 2015.

[19] H. Abbes, T. Louati, and C. Cerin, “Dynamic replication factor model for Linux containers-

based cloud systems”, Journal of Supercomputing, no. 76, pp 7219-7241, 2020, doi:

10.1007/s11227-020-03158-5.

[20] R. Baclit, C. Sicam, P. Membrey, and J. Newbigin, “The Linux Kernel”, in Foundations of

CentOS Linux. California, USA: Apress, 2009, pp. 415-434.

[21] M. Bagherzadeh, N. Kahani, and C.P. Bezemer, “Analyzing a decade of Linux system calls”,

Empirical Software Engineering, no. 23, pp. 1519-1551, 2018, doi: 10.1007/s10664-017-9551-z.

[22] Using eBPF in Kubernetes. [Online]. Available: https://kubernetes.io/blog/2017/12/using-

ebpf-in-kubernetes. Accessed on: Dec 10, 2019.

[23] Linux System Call Table. [Online]. Available: https://thevivekpandey.github.io/posts/2017-

09-25-linux-system-calls.html. Accessed on: Dec 10, 2019.

[24] S. Adameit, “Modelling Distributed Network Security in a Petri Net- and Agent-Based

Approach”, in Lecture Notes in Computer Science, vol. 6251. Berlin, Germany: Springer,

2010, pp. 209-220, doi: 10.1007/978-3-642-16178-0_20.

The article was received 20.02.2020.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

[1] Best Practices for Running Containers and Kubernetes in Production. [Online]. Available:

https://www.gartner.com/en/documents/3902966/best-practices-for-running-containers-and-

kubernetes- in-. Accessed on: Dec. 14, 2019.

[2] 2019 Container Adoption Survey. [Online]. Available: https://portworx.com/wp-

content/uploads/2019/05/2019-container-adoption-survey.pdf. Accessed on: Dec. 14, 2019.

[3] Д. Н Тяжельников, П. А. Токарев, и И. Д. Петров, “Виртуализация рабочего

пространства с ускорением 3d-приложений на стороне сервера при помощи Docker”,

Проблемы современной науки и образования, № 14, c. 21-23, 2017.

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

65

[4] Infrastructure as Code. [Оnline]. Аvailable: https://infrastructure-as-code.com/. Accessed on:

Dec. 14, 2019.

[5] A. R. Sampaio, J. Rubin, Beschastnikh, N. S. Roca, “Improving microservice-based applications

with runtime placement adaptation”, The Journal of Supercomputing, vol. 10, no. 4, pp. 1-30,

2019, doi: 10.1186/s13174-019-0104-0.

[6] A. Milenkoski, K. R. Jayaram, and S. Kounev, “Benchmarking Intrusion Detection Systems

with Adaptive Provisioning of Virtualized Resources”, in Self-Aware Computing Systems,

pp. 633-657, 2017, doi: 10.1007/978-3-319-47474-8_22.

[7] I. Rosenberg, and E. Gudes, “Evading System-Calls Based Intrusion Detection Systems.

Network and System Security”, in Proc. International Conference on Network and System

Security, Taipei, Taiwan, 2016, pp. 200-216, doi: 10.1007/978-3-319-46298-1_14.

[8] National Institute of Standards and Technology. (2007, Febr. 20). NIST SP 800-94, Guide to

Intrusion Detection and Prevention Systems. [Online]. Available: https://csrc.nist.gov/

publications/detail/sp/800-94/final. Accessed on: Dec 10, 2019.

[9] International Organization for Standardization. (2015, Febr. 11). ISO/IEC 27039, Information

technology. Security techniques. Selection, deployment and operation of intrusion detection

and prevention systems. [Online]. Available: https://www.iso.org/standard/56889.html.

Accessed on: Dec 10, 2019.

[10] PCI Security Standards Council. (2018, May 01). Payment Card Industry Data Security

Standard. [Online]. Available: https://ru.pcisecuritystandards.org/_onelink_/pcisecurity/

en2ru/ minisite/en/docs/PCI_DSS_v3_2_RU-RU_Final.pdf. Accessed on: Dec 10, 2019.

[11] M. Aldwairi, A. M. Abu-Dalo, and M. Jarrah, “Pattern matching of signature-based IDS using

Myers algorithm under MapReduce framework”, EURASIP Journal on Information Security,

2017:9, 2017, doi: 10.1186/s13635-017-0062-7.

[12] V. Mishra, V. K. Vijay, and S. Tazi, “Intrusion Detection System with Snort in Cloud

Computing: Advanced IDS”, in Proc. of International Conference on ICT for Sustainable

Development, Washington, USA, 2016, pp.457-465.

[13] A. Belova, and D. Borodavkin, “Comparative analysis of intrusion detection systems”, Actual

problems of aviation and astronautics, Siberian Federal University, vol. 1, no. 12, pp. 742-

744, 2016.

[14] W. Park, and S. Ahn, “Performance Comparison and Detection Analysis in Snort and Suricata

Environment”, Wireless Pers Commun, no. 94, pp. 241-252, 2016, doi: 10.1007/s11277-016-

3209-9.

[15] M. Sourour, B. Adel, and A. Tarek, “Network Security Alerts Management Architecture for

Signature-Based Intrusions Detection Systems within a NAT Environment”, Journal of

Network and Systems Management, no. 19, pp. 472-495, 2011, doi: 10.1007/s10922-010-9195-4.

[16] Snort and SSL/TLS Inspection, 2017. [Online]. Available: https://www.sans.org/reading-

room/whitepapers/detection/snort-ssl-tls-inspection-37735. Accessed on: Dec 10, 2019.

[17] Docker overview, 2020. [Online]. Available: https://docs.docker.com/get-started/overview.

Accessed on: Dec 10, 2019.

[18] A. Mouat, Using Docker, Using Docker: Developing and Deploying Software with

Containers. Newton, USA: O’Reilly Media, 2015.

[19] H. Abbes, T. Louati, and C. Cerin, “Dynamic replication factor model for Linux containers-

based cloud systems”, Journal of Supercomputing, no. 76, pp 7219-7241, 2020, doi:

10.1007/s11227-020-03158-5.

[20] R. Baclit, C. Sicam, P. Membrey, and J. Newbigin, “The Linux Kernel”, in Foundations of

CentOS Linux. California, USA: Apress, 2009, pp. 415-434.

[21] M. Bagherzadeh, N. Kahani, and C.P. Bezemer, “Analyzing a decade of Linux system calls”,

Empirical Software Engineering, no. 23, pp. 1519-1551, 2018, doi: 10.1007/s10664-017-9551-z.

[22] Using eBPF in Kubernetes. [Online]. Available: https://kubernetes.io/blog/2017/12/using-

ebpf-in-kubernetes. Accessed on: Dec 10, 2019.

P-ISSN 2411-1031. Information Technology and Security. January-June 2020. Vol. 8. Iss. 1 (14)

66

[23] Linux System Call Table. [Online]. Available: https://thevivekpandey.github.io/posts/2017-

09-25-linux-system-calls.html. Accessed on: Dec 10, 2019.

[24] S. Adameit, “Modelling Distributed Network Security in a Petri Net- and Agent-Based

Approach”, in Lecture Notes in Computer Science, vol. 6251. Berlin, Germany: Springer,

2010, pp. 209-220, doi: 10.1007/978-3-642-16178-0_20.

ОЛЕКСІЙ МІСНІК

МОДЕЛЬ ЗАБЕЗПЕЧЕННЯ БЕЗПЕКИ КОНТЕЙНЕРНИХ СЕРЕДОВИЩ

ПРОГРАМНИХ ЗАСТОСУНКІВ

Встановлено призначеність контейнерних середовищ для розроблення, доставляння і

експлуатування програмних застосунків різних типів. Серед цих типів найбільш поширене

використання як веб, так і мобільних застосунків. Це обумовлено орієнтованістю

контейнерних середовищ на їх більш швидке завантаження та встановлення. Використання

такого підходу дозволяє розглядати інфраструктуру як код і отримувати пов’язані з нею

переваги. Насамперед пришвидшити розроблення програмних застосунків, зокрема,

зменшити час між їх написанням і запусканням. Цьому сприяє розгортання контейнерних

середовищ на платформах контейнерної віртуалізації, використання утиліт завантаження і

керування програмними застосунками. Однак, незважаючи на це використання

контейнерних середовищ програмних застосунків на практиці обмежується необхідністю

забезпечувати їх безпеку. Насамперед це пов’язано з використанням типових підходів на

основі систем виявлення вторгнень. При їх впровадженні поза увагою залишаються

особливості використання контейнерних середовищ порівняно з фізичними. Серед них

виокремлюються врахування уразливостей і загроз платформ контейнерної віртуалізації,

перевіряння процесів контейнерних середовищ з огляду на особливості їхньої архітектури та

вхідного потоку навантаження. Для подолання складнощів використання систем виявлення

вторгнень запропоновано модель забезпечення безпеки контейнерних середовищ

програмних застосунків. За її основу взято ідею використання системних викликів хост

системи на прикладі операційної системи Linux. Це пов’язано з тим, що через них

відбувається взаємодія програмних застосунків з ядром. Тому виділено користувачів як

джерел вірогідних вторгнень у контейнерні середовища. Крім того наведено приклади

нетипових команд для аналізування протягом виконання системних викликів. На основі

отриманих результатів виокремлено етапи виявлення вторгнень і переходи між ними. Як

наслідок, формалізовано даний процес мережею Петрі. Її визначено сукупністю множин

етапів, переходів між етапами, відношень між етапами та переходами протягом виявлення

вторгнень. Тож на основі запропонованої моделі стало можливим встановлення

особливостей забезпечення безпеки контейнерних середовищ програмних застосунків.

Ключові слова: програмний застосунок, контейнерне середовище, безпека, виявлення

вторгнень, система виявлення вторгнень, системні виклики.

Misnik Oleksii, postgraduate student, Pukhov institute for modeling in energy engineering of

National academy of sciences of Ukraine, Kyiv, Ukraine.

ORCID: 0000-0002-4654-9125.

E-mail: oleksii.misnik@gmail.com.

Міснік Олексій Ігоревич, аспірант, Інститут проблем моделювання в енергетиці

ім. Г.Є. Пухова Національної академії наук України, Київ, Україна.

